KENTUCKY

UK led University of Kentucky
At UKnowledge

University of Kentucky Doctoral Dissertations Graduate School

2008

Accurate and Robust Preconditioning Techniques for Solving
General Sparse Linear Systems

Eun-Joo Lee
University of Kentucky, elee3@csr.uky.edu

Right click to open a feedback form in a new tab to let us know how this document benefits you.

Recommended Citation

Lee, Eun-Joo, "Accurate and Robust Preconditioning Techniques for Solving General Sparse Linear
Systems" (2008). University of Kentucky Doctoral Dissertations. 650.
https://uknowledge.uky.edu/gradschool_diss/650

This Dissertation is brought to you for free and open access by the Graduate School at UKnowledge. It has been
accepted for inclusion in University of Kentucky Doctoral Dissertations by an authorized administrator of
UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu.

www.manharaa.com

http://uknowledge.uky.edu/
http://uknowledge.uky.edu/
https://uknowledge.uky.edu/
https://uknowledge.uky.edu/gradschool_diss
https://uknowledge.uky.edu/gradschool
https://uky.az1.qualtrics.com/jfe/form/SV_9mq8fx2GnONRfz7
mailto:UKnowledge@lsv.uky.edu

o AJLb

ABSTRACT OF DISSERTATION

Eun-Joo Lee

The Graduate School
University of Kentucky
2008

www.manharaa.com

Accurate and Robust Preconditioning Techniques
for Solving General Sparse Linear Systems

ABSTRACT OF DISSERTATION

A dissertation submitted in partial
fulfillment of the requirements for
the degree of Doctor of Philosophy
in the College of Engineering at the
University of Kentucky

By
FEun-Joo Lee
Lexington, Kentucky

Director: Dr. Jun Zhang, Professor of Computer Science

Lexington, Kentucky 2008

Copyright© Eun-Joo Lee 2008

www.manharaa.com

ABSTRACT OF DISSERTATION

Accurate and Robust Preconditioning Techniques
for Solving General Sparse Linear Systems

Preconditioned Krylov subspace methods are generally regarded as one class of the
most promising techniques for solving very large and sparse linear systems, but these
methods may produce instability and/or inaccuracy problems for certain matrices.
Inaccuracy problems are usually caused by the difficulty in determining parameters
or threshold values in constructing preconditioners for some particular matrices. In
addition, small or zero pivots in indefinite matrices may yield preconditioners that
are unstable and inaccurate. The purpose of this study is mainly concerned with
improving stability and accuracy of preconditioners.

Firstly, for the purpose of improving the accuracy of incomplete lower-upper (ILU)
factorization, two preconditioning accuracy enhancement strategies were proposed.
The strategies employ the elements that are dropped during ILU factorization and
utilize them in different ways with separate algorithms. The first strategy (error
compensation) applies the dropped elements to the lower and upper parts of the
LU factorization to compute a new error compensated LU factorization. The other
strategy (inner-outer iteration), which is a variant of the ILU factorization, embeds
the dropped elements in the preconditioning iteration process.

Secondly, in order to increase the accuracy and stability of preconditioners in
solving indefinite matrices, hybrid reordering and two-phase preconditioning strate-
gies based on incomplete LU (ILU) factorization and a sparse approximate inverse
(SAI) preconditioner, respectively are considered. These strategies attempt to replace
the small or zero pivots with large values, ensuring that the resulting preconditioners
are better conditioned. Specifically, the hybrid reordering strategies efficiently search
for the entries of single element and/or the maximum absolute value to place the ele-
ments on the main diagonal of the original matrix, and the two-phase preconditioning
strategy adopts the idea of a shifting method that adds a value to the diagonals of
an indefinite matrix. The two-phase preconditioning strategy produces an inverse
approximation of the shifted matrix by constructing a SAI preconditioner in each
phase. The two inverse approximation matrices produced from each phase are then
combined to be used as a preconditioner.

www.manaraa.com

Thirdly, with the intention of enhancing the convergence performance of the pre-
conditioned iterative solvers, two sparsity pattern selection algorithms for a factored
sparse approximate inverse preconditioner are considered. The sparsity pattern is
adaptively updated in the construction phase of a preconditioner by using combined
information of the inverse and original triangular factors of the original matrix. In
order to determine the sparsity pattern, the first algorithm uses the norm of the in-
verse factors multiplied by the largest absolute value of the original factors, and the
second employs the norm of the inverse factors divided by the norm of the original
factors.

KEYWORDS: Linear System, Preconditioning, Incomplete LU (ILU) Factorization,
Indefinite Matrices, Sparse Approximate Inverse (SAI) Preconditioner

Author’s signature: Eun-Joo Lee

Date: August 20, 2008

v

www.manharaa.com

Accurate and Robust Preconditioning Techniques
for Solving General Sparse Linear Systems

By
Eun-Joo Lee

Director of Dissertation:

Director of Graduate Studies:

Date:

Dr. Jun Zhang

Dr. Andrew Klapper

August 20, 2008

www.manharaa.com

RULES FOR THE USE OF DISSERTATIONS

Unpublished dissertations submitted for the Doctor’s degree and deposited in the
University of Kentucky Library are as a rule open for inspection, but are to be used
only with due regard to the rights of the authors. Bibliographical references may
be noted, but quotations or summaries of parts may be published only with the
permission of the author, and with the usual scholarly acknowledgments.

Extensive copying or publication of the dissertation in whole or in part also re-
quires the consent of the Dean of the Graduate School of the University of Kentucky.

A library that borrows this dissertation for use by its patrons is expected to secure
the signature of each user.

Name Date

www.manharaa.com

DISSERTATION

Eun-Joo Lee

The Graduate School
University of Kentucky
2008

www.manharaa.com

Accurate and Robust Preconditioning Techniques
for Solving General Sparse Linear Systems

DISSERTATION

A dissertation submitted in partial
fulfillment of the requirements for
the degree of Doctor of Philosophy
in the College of Engineering at the
University of Kentucky

By
FEun-Joo Lee
Lexington, Kentucky

Director: Dr. Jun Zhang, Professor of Computer Science

Lexington, Kentucky 2008

Copyright© Eun-Joo Lee 2008

www.manharaa.com

ACKNOWLEDGMENTS

It is pleasure to thank many people who made this thesis possible. Without their
helpful support, and encouragement, I would have never been able to complete this
work.

First of all, I would like to express my gratitude to my Advisory Committee: Dr.
Jun Zhang, Dr. Jerzy W. Jaromczyk, Dr. Ruigang Yang, Dr. Fugian Yang, and Dr.
Lawrence A. Harris for their helpful comments on my dissertation.

It is difficult to overstate my gratitude to my Ph.D. supervisor, Dr. Jun Zhang.
With his enthusiasm, his inspiration, and his great efforts to explain things clearly
and simply, he helped to make research in computer science fun and exciting for
me. Throughout my thesis-writing, he provided encouragement, sound advice, good
teaching, good company, and lots of good ideas.

Also, I am deeply grateful to Dr. Grzegorz W. Wasilkowski and Dr. Debby Keen,
for their kind assistance with writing letters, giving wise advice, helping with various
applications, and so on.

I am indebted to many student colleagues for providing a stimulating and fun
environment in which to learn and grow. Especially, I would like to thank Dr. Ning
Kang at UC San Diego, Dr. Chi Shen at Kentucky State University, Dr. Wensheng
Shen at SUNY Brockport, and Dr. Shuting Xu at Virginia State University, Mr.
Ning Cao, Mr. Dianwei Han, Mr. Xuwei Liang, Mr. Zhenmin Lin, Mr. Lian Liu,
Ms. Jie Wang, Mr. Yin Wang, Mr. Changjiang Zhang, Mr. Qi Zhuang and other
group members in our lab. Working together with all of you has been not only a
unforgettable experience, but a great pleasure as well.

I wish to thank my entire extended family for providing a loving environment for

me..My brother, my sisters, aunts, my parents-in-law were particularly supportive.

il

www.manaraa.com

Specially, I would like to thank my husband, Kideog Jeong, for his love and support.
Lastly, and most importantly, I wish to thank my parents, Yong-Sub Lee and
Myung-Ja Kim. They bore me, raised me, supported me, taught me, and loved me.

To them I dedicate this thesis.

v

www.manharaa.com

TABLE OF CONTENTS

Acknowledgments L iii
List of Figures vii
List of Tables viii
List of Files i
Chapter 1 Introduction 1
1.1 Motivation 2
1.2 Organization 9
Chapter 2 Background oo 11
2.1 Preconditioned Iterative Methods 12
2.2 Incomplete Factorization Preconditioners 16
2.3 Sparse Approximate Inverses 20
Chapter 3 Incomplete LU Preconditioning Enhancement Strategies 25
3.1 Introduction 25
3.2 Preconditioning Accuracy Enhancement Strategies. 27
3.3 Experimental Results, 31
3.4 Conclusions and Remarks 40
Chapter 4 Hybrid Reordering Strategies 42
4.1 Introduction 42
4.2 Hybrid Reordering Strategy 45
4.3 Experimental Results 0L 48
4.4 Concluding Remarks oo 55
Chapter 5 A Two-Phase Preconditioning Strategy 56
5.1 Introduction 06
5.2 Stabilized FAPINV (SFAPINV) Preconditioner 58
5.3 Numerical Experiments 0oL 63
54 Concluding Remarks Lo 70
Chapter 6 Factored Approximate Inverse Preconditioners with Dynamic Spar-
sity Patternso oo 73
6.1 Introduction 73
6.2 Factored Sparse Approximate Inverses 74
6.3 Dynamic Sparsity Pattern based Factored Approximate Inverse Pre-

conditioners 79
/ N 1

www.manharaa.com

6.5 Concluding Remarks 0 88

Chapter 7 Conclusions and Future Work 90
7.1 Accomplishments 90
7.2 Future Work 93

Bibliography 94

Vita . . . 99

vi

www.manharaa.com

LIST OF FIGURES

2.1 The ILU(0) factorization for a five-point matrix with five nonzero diagonals. 18

3.1 The convergence curves for the PDE2961 and MHD3200B matrices. . . . 34
3.2 The convergence curves for the LOP163 and SHERMANS matrices. . . . 37
4.1 The MAHINDAS and SHL_400 matrices [50]. 43
4.2 Plots of the eigenvalues of the MAHINDAS matrix. (These subfigures are

in different scale.) Lo 53
5.1 The FIDAP 014 matrix [50] and the convergence curves with different

values of the shifting factors and the dropping parameters. 67
5.2 The GRE_512 matrix [50] and the convergence curves with different values

of the dropping parameters. 67
5.3 Plots of the eigenvalues of the FIDAP014 matrix. (These subfigures are

in different scale.)o 71
6.1 The convergence curves of the CAVITY matrices. 87
6.2 Plots of the eigenvalues of the LNS_131 matrix. (These subfigures are in

different scale.) L 89

vil

www.manharaa.com

LIST OF TABLES

3.1 Comparison of the size of preconditioned error matrices £ and E ... 29
3.2 Comparison of the size of preconditioned error matrices K and £. 31
3.3 Description of the test matrices. 32
3.4 Comparison of the number of PGMRES iterations with and without dif-
ferent error compensation strategies.o 33
3.5 Comparison of CPU time in seconds with the different error compensation
strategies. Lo Lo 35
3.6 Comparison of the number of PGMRES iterations with different number
of inner iterations. L 36
3.7 Comparison of CPU time in seconds of ILU(0) and ILUT with different
number of inner iterations. 37
3.8 Comparison of the number of PGMRES iterations with and without dif-
ferent error compensation strategies.o 38
3.9 Comparison of CPU time in seconds with the different error compensation
strategies in ILU(0) preconditioning. 39
3.10 Comparison of CPU time in seconds with the different error compensation
strategies in ILUT preconditioning. 40
4.1 Description of the test matrices. 49
4.2 Comparison of nonzero entries on diagonal.. 50
4.3 Comparison of the number of iterations. 50
4.4 Comparison of the number of nonzero entries. 51
4.5 The largest and smallest eigenvalues and condition numbers of the MAHIN-
DAS matrix. 52
4.6 Comparison with condest. 54

5.1 Description of the test matrices ; n, nnz, nnzdiag, and condition denotes

the order, the number of nonzero entries, the number of nonzero entries

on the main diagonal, and the condition number of a matrix, respectively. 64
5.2 The relationship between the matrix properties and the shifting factors. . 64
5.3 Test results for solving the FIDAP(014 matrix with different values of the

shifting factors and the dropping parameters. 66
5.4 Test results of SFAPINV for solving the FIDAP033 matrix with different
values of the shifting factors and the dropping parameters. 66
5.5 Test results of SFAPINV for solving the GRE_512 matrix with different
values of the dropping parameters. 66
5.6 Comparisons of SFAPINV and FAPINV. 68
5.7 Parameters used in SFAPINV and FAPINV. 69
5.8 The largest and smallest eigenvalues and conditioning information of the
FIDAPO14 matrix. 70
viii

www.manaraa.com

6.1 Description of the test matrices ; n, nnz, nnzdiag, and condition denotes
the order, the number of nonzero entries, the number of nonzero entries
on the main diagonal, and the condition number of a matrix, respectively.
Under “N/A” we report that the condition number was not available from

Matrix Market [50].o 84
6.2 Comparisons of the number of preconditioned GMRES iterations with

different sparsity pattern based FAPINV preconditioners. 85
6.3 Comparisons with different dynamic sparsity pattern strategies. 86
6.4 Largest and smallest eigenvalues and conditioning information of the LNS_131

matrix.o 87

X

www.manharaa.com

List of Files

EunjooLee.pdf

www.manharaa.com

Chapter 1 Introduction

Many computational science and engineering problems can be formulated in the form
of partial differential equations (PDEs). The typical way to solve such equations is
to discretize them, changing a continuous problem into a discrete problem. These
discretizations generally result in linear systems with large and sparse coefficient
matrices, which have to be solved efficiently.

For solving a linear system of the form:
Az =b, (1.1)

either direct or iterative methods can be used. Here, A is a real (or complex) valued
sparse coefficient matrix of order n, z is an unknown vector, and b is a known right-
hand side vector. Direct methods, based on the factorization of the coefficient matrix
A into easily invertible matrices, allow exact computations up to the machine accu-
racy. On account of their robustness, these methods are widely employed in many
industrial areas where reliability is the primary concern. Direct methods, however,
often become inefficient for solving large scale problems. Especially, the problems
arising from the discretization of PDEs in three space dimensions sometimes lead to
linear systems comprising of hundreds of millions or even billions of equations [8].
Generally speaking, direct methods are not useful to solve such large problems be-
cause (1) they have a computational complexity of O(n®) on an n x n matrix and (2)
a large amount of memory cost caused by the fill-ins, nonzero elements into original
zero element locations, during the Gaussian elimination.

Iterative methods should be utilized for solving large-scale problems by reason of
their computational efficiency. These methods generate a sequence of approximate
solutions to the system that (hopefully) converges to the exact solution. In addition,

iterative-methods require fewer storage and fewer operations than direct methods in

www.manaraa.com

solving problems because iterative methods avoid some of the costs associated with
fill-in in matrix factors. However, iterative methods do not have the same reliability
of direct methods, and the convergence of iterative methods is related to the condition
number of a coefficient matrix. This results that iterative methods often fail to attain
convergence in a reasonable amount of time or even diverge in solving ill-conditioned
problems.

Preconditioning a matrix is useful to accelerate the convergence of iterative meth-
ods. Preconditioning is a way to transform the original linear system (1.1) into
another system of the form:

M ‘Az = M b, (1.2)

where M is a nonsingular matrix with the same order of A. Here, the system (1.2)
is preconditioned from left, and the matrix M is called a (left) preconditioner. The
preconditioned system (1.2) has the same solution of the original linear system (1.1),
and M ' A generally attempts to provide a smaller condition number than A.

It has been widely noticed that preconditioning is the most crucial part in the de-
velopment of efficient solvers for challenging problems in scientific computation [8, 57].
Moreover, the importance of preconditioning has been more weighted as the size of the
problems to be solved has become larger and larger. As a result, research in matrix
preconditioning has received more attention than both direct methods and iterative
methods in past few years, and lots of efforts have been made in developing effective
preconditioners. This dissertation mainly focuses on preconditioning techniques to
improve the performance and reliability of iterative methods in solving general sparse

matrices.

1.1 Motivation

Preconditioned Krylov subspace methods, which are based on projection processes

and are one of the most important iterative methods for solving large linear systems,

www.manaraa.com

are generally regarded as one class of the most promising techniques [9, 17, 19, 41|
for solving very large and sparse linear systems. In general, incomplete lower-upper
(ILU) and sparse approximate inverse (SAI) preconditioning techniques have been
widely used and have been successful in solving many large and sparse matrices.
Such techniques, however, may commonly encounter two major issues. Firstly, their
accuracy is often insufficient to yield an adequate rate of convergence due to the diffi-
culty in determining parameters or threshold values in constructing preconditioners.
In addition, they may confront difficulty when a matrix to be solved is indefinite,
that is, when the matrix has both positive and negative eigenvalues. This is because
small or zero pivots in indefinite matrices may produce unstable and inaccurate pre-
conditioners.

In response to these issues associated with preconditioning techniques, we have
concerned ourselves with improving accuracy and stability of a preconditioner in

solving large and sparse matrices.

Insufficient Accuracy of Incomplete LU (ILU) Factorization

The convergence of iterative methods can be accelerated by using incomplete LU
(ILU) preconditioners associated with an ILU factorization. ILU preconditioners
usually perform quite well in solving symmetric and asymmetric matrices. Most ILU
preconditioners, however, have a common issue that the accuracy of ILU factorization
may be insufficient to yield an adequate rate of convergence because of the dropped
elements during the factorization.

In general, more accurate ILU factorizations are often more efficient as well as
more reliable [54, 55]. In this way, we consider two strategies to improve the accuracy
of some ILU preconditioners. ILU(0) (incomplete LU factorization with zero fill-in) is

one of the simplest ways to define a preconditioner having the form of an incomplete

www.manaraa.com

LU factorization

A=1LU+E, (1.3)

where the L and U matrices have the same nonzero structures as those of the lower
and upper triangular parts of A, respectively, and E is the error or residual matrix
of the factorization. According to Saad [55], the elements of the error matrix F
are exactly those that are dropped during the ILU factorization. In standard ILU
factorizations, the dropped elements are discarded. In order to improve the accuracy
of the computed ILU(0) preconditioner, we collect the dropped elements during the
ILU factorization process by paying little computation and some storage space that
can be ignorable in modern computing environments.

ILU(0) preconditioning is rather easy to implement and computationally inex-
pensive compared to other ILU preconditioners, but it may require many iterations
to converge due to its coarse approximation of the original matrix A [54, 55]. It
has been noticed that ILU factorization generally yield more accurate factorizations
than ILU(0) when numerical dropping strategies are adopted in the processes of ILU
factorization. The reason is that the dropping strategies try to minimize F in Equa-
tion (1.3) in some sense [19].

Accordingly, ILUT (a dual threshold incomplete LU factorization) [54] can be
considered as an alternative of ILU(0). ILUT approach relies on numerical values for
dropping elements, and it has a limit on the number of allowed fill-in elements. Also,
this approach develops ILU factorization preconditioners with improved accuracy if
the dropping tolerance and the fill-in parameters are chosen properly. On the other
hand, ILUT with large dropping tolerance and small fill-in does not constitute a
reliable approach, and generally it gives low accuracy ILU factorizations [54, 55].

In response to the accuracy issue associated with ILU factorizations, we consider
the fact that the size of the error matrix E directly affects the convergence rate of the

preconditioned iterative methods [32]. Furthermore, the quality of a preconditioning

www.manaraa.com

step is directly related to the size of both (LU)™' and E, that is, a high quality
preconditioner must have an error matrix that is small in size [68]. The new precon-
ditioning accuracy enhancement strategies proposed in Chapter 3 were inspired by
scrutinizing these facts and exploiting the error values dropped in the factorization
to improve the accuracy of the incomplete LU factorizations.

The main idea of the error compensation strategy is to use the error matrix
before starting the preconditioned iteration process. After acquiring the LU factor-
ization with a preconditioner, we add the error matrix E to the L and U matrices
to obtain an error compensated factorization LU. The accuracy of using LU is in-
creased significantly in some cases, compared with that of using LU directly, such
that ||E(= A — LU)|| < ||E(= A — LU)||.

The second preconditioning enhancement strategy (an inner-outer iteration pro-
cess) uses the error matrix during the preconditioned iteration process. It can be

considered as a variant of the LU solver with an error embedded LU approach.

Limitations of Preconditioning Techniques for Indefinite Matrices

Indefinite matrices, which have positive and negative eigenvalues, arise frequently
from finite element discretizations of coupled partial differential equations in compu-
tational fluid dynamics and other applications. In solving such indefinite matrices,
however, there are at least two reasons that make preconditioning techniques difficult
[19]. The first reason can be due to small or zero pivots in an indefinite matrix that
may lead to unstable and inaccurate factorizations [44]. In addition, small pivots are
usually related to small or zero entries on the diagonal of the matrix, so the indefinite
matrix with zero diagonal entries may have higher chances of encountering zero pivots
if the matrix is also nonsymmetric [54, 68]. Secondly, unstable triangular solutions
can be resulted when [|[L7!|| and ||[U~!|| are extremely large while the off-diagonal

elements of L and U are reasonably bounded. Such problems are usually caused by

www.manaraa.com

very small pivots, but they may sometimes happen without a small pivot [19, 34, 68].

As mentioned above that small pivots are often the origin of cumbersome to
computing ILU factorization on an indefinite matrix, a better performance can be
expected if small pivots would be replaced with some large values in the matrix.
Starting from this idea, we proposed reordering strategies that reorder the rows of
the matrix to increase the diagonal dominance rate of the rows.

Many researchers [10, 27, 28, 30, 31] have focused on permuting large entries onto
the diagonal of indefinite matrix in the situations of either using direct or iterative
solvers. For example, Duff and Koster [30, 31] exploited bipartite matching algo-
rithms and scaling techniques for computing permutations of a sparse matrix. Their
reordering and scaling algorithms are effective to the performance of various methods
for solving sparse matrices. In experimental studies using Duff and Koster’s [31] algo-
rithms, Benzi et al. [10] considered matching algorithms such as maximum transver-
sal, maximum product transversal, and the bottleneck transversal with symmetric
permutations. However, their preprocessing step in matching is still complicated
with several symmetric permutations.

In order to solve indefinite matrices efficiently, we present two diagonal reorder-
ing algorithms that are computationally inexpensive but efficient in the aspect of
reordering performance for indefinite matrices. To that end, we propose new hybrid
reordering strategies that are composed with a combination of two different diagonal

reorderings and a nondecreasing degree algorithm presented in Chapter 4.

Sparse Aapproximate Inverses and Indefinite Matrices

Of the many types of preconditioners, sparse approximate inverse (SAI) precondi-
tioners, of which the preconditioning process is just a (sparse) matrix-vector product
operation, have recently become popular in solving many application problems due

to their potential employment in parallel implementations [9, 16, 19, 18, 37, 38, 41].

www.manaraa.com

And for parallelizable preconditioners, several versions of sparse approximate inverse
(SAT) techniques have been developed [13, 16, 20, 21, 37, 41, 69] in the past few years.
Unlike ILU-type preconditioners, which need triangular solution procedures at every
preconditioning step, SAl-type preconditioners possess a high degree of parallelism
in the preconditioner application phase. Thus, SAl-type preconditioners would be
an interesting alternative to ILU-type preconditioners [6, 7] that can be run on high
performance distributed memory parallel computers.

Sparse inverse preconditioning techniques may succeed in solving certain problems
where the ILU factorizations are difficult to handle [18]. It has been noticed that
factored sparse approximate inverse (FAPINV), which is a sparse approximate inverse
that has a factored form, tends to perform better in convergence rate for the same
amount of nonzeros in the preconditioner and also requires less computational cost
than a non-factored form does. However, the resulting sparse approximate inverse
can still break down for solving indefinite matrices due to zero or small pivots [9, 69].

A shifting strategy, which adds a value to the diagonals of an indefinite matrix,
can help the resulting preconditioner better conditioned [9, 51, 64], but determining
the value to be added for small pivots is usually critical to the performance of the
resulting preconditioner [44]. In other words, selecting a large replacing value may
result in a factorization that is stable but less accurate. On the other hand, selecting
a small replacing value may result in a factorization that is accurate but unstable.
Such a tradeoff of the shifting strategy has been well studied in [68].

As part of our continuous efforts on solving indefinite matrices, we propose to
adopt the idea of a shifting strategy [51] to replace small or zero elements on the
diagonal of the original matrix, and to reinforce with a two-phase preconditioning
process to deal with the tradeoff between stability and accuracy of the resulting
preconditioner in Chapter 5. More specifically, the first phase of the construction

process employs the shifting strategy to the original matrix so that a shifted matrix

www.manaraa.com

can be well conditioned, and then an approximate inverse, M, of the shifted matrix
is obtained by utilizing FAPINV. In the second phase of the construction process, a
temporary matrix, a product of M; and the shifted matrix, is considered to acquire
a better approximate inverse of the original matrix than M;. Applying the shifting
strategy again to the temporary matrix produces a second shifted matrix, and FAP-
INV computes a second approximate inverse matrix, My, of the second shifted matrix.
Then the resulting sparse approximate inverse, M, has the form of M = My M;, where

M; and M, are computed in each phase.

Sparse Approximate Inverses and Sparsity Patterns

Computational efficiency and potential parallelism of sparse approximate inverse
(SAI)-type preconditioners leads us to choose SAI preconditioners as an alternative
to the conventional ILU preconditioners. It has been noticed that the performance
of SAI preconditioners depends on their sparsity patterns so that the search for an
optimal sparsity pattern to construct the SAI preconditioners should be taken with
extreme care [62, 69].

In determining the sparsity pattern of SAI, there exists two main classes of meth-
ods called static and dynamic strategies. A static sparsity pattern strategy prescribes
the sparsity pattern before constructing a preconditioner, and the pattern remains
unchanged until finishing the construction. Although this class of sparsity pattern
selection strategy is usually efficient in terms of computational cost due to the use of
a prescribed (fixed) pattern through the construction process, for general sparse ma-
trices, the prescribed sparsity pattern is often inadequate for robustness [69]. On the
contrary, a dynamic sparsity pattern strategy adjusts the pattern using some rules in
the construction phase. Such a strategy usually computes more accurate and more
robust preconditioners than a static strategy [62]. Thus, a dynamic sparsity pattern

strategy may be used to substitute for a static sparsity pattern strategy in solving

www.manaraa.com

difficult matrices.

In recent years, a few dynamic pattern strategies [15, 41] for SAT preconditioners
have been developed. For example, Bollhdfer [14] showed that the norms of the inverse
triangular factors have direct influence on the dropping strategy in computing a new
ILU decomposition. Based on this insight, Bollhdfer [15] proposed an algorithm that
manages the process of dropped entries with small absolute values by using the row
norm of any row of the inverse factors, but the algorithm has a limitation on solving
some ill-conditioned problems.

In Chapter 6, we introduce two enhanced algorithms, which extend the algo-
rithm [15] mentioned above, using combined information of the norm of the inverse
factors and either the largest absolute value of the original factors or the norm of
the original factors. Due to our enhancement strategy, the presented algorithms may

produce better results in solving ill-conditioned problems.

1.2 Organization

This dissertation is composed of seven chapters, notations are introduced as the need
arises, and conclusions are given in each chapter separately. The remainder of this

dissertation is organized as follows:

e Chapter 2 provides some background on research areas relevant to the rest
of the dissertation. Readers with prior knowledge in iterative methods and

preconditioning techniques may want to skim this chapter.

e In Chapter 3, several preconditioning enhancement strategies for improving
inaccurate preconditioners generated by the incomplete LU factorizations of
sparse matrices are presented. The strategies employ the elements that are
dropped during the incomplete LU factorization and utilize them in different

ways with separate algorithms. Experimental results of enhancement strategies

www.manaraa.com

are presented to show accuracy improvement of the incomplete LU factorization

in case that the initial factorizations are found to be inaccurate.

e In Chapter 4, we present hybrid strategies for indefinite matrices and new diag-
onal reorderings that are in conjunction with a symmetric nondecreasing degree
algorithm. With the reordered matrices, we have achieved a considerably im-

proved stability of incomplete LU factorizations.

e In Chapter 5, a two-phase preconditioning strategy based on FAPINV is pro-
posed for solving sparse indefinite matrices. The presented strategy improves
the accuracy and the stability of the preconditioner in solving indefinite sparse

matrices.

e In Chapter 6, we propose two sparsity pattern selection algorithms for factored
approximate inverse preconditioners in solving general sparse matrices. The
sparsity pattern is adaptively updated in the construction phase by using com-
bined information of the inverse and original triangular factors of the original

matrix.

e Chapter 7 summarizes conclusions of this dissertation and outlook for possible

future research directions.

Copyright® Eun-Joo Lee, 2008.

10

www.manharaa.com

Chapter 2 Background

In solving a linear system Az = b, direct methods or iterative methods can be consid-
ered. Direct methods are usually used in areas where reliability is the primary concern
on account of their delivery of exact solutions. The most widely known direct method

is Gaussian elimination, which computes a matrix factorization,
A= LU,

where L and U are lower and upper triangular, respectively. In order to solve a linear
system Az = b, the computed factorization LUx = b can be utilized with forward
elimination (Ly = b) and backward substitution (Uz = y). Gaussian elimination on
an n X n matrix has a computational complexity of O(n®) and storage complexity of
O(n?). However, direct methods become inefficient in terms of operation count and
memory requirement as the size of the linear systems increased.

For solving such large and sparse linear systems, iterative methods, which generate
a sequence of approximate solutions to the systems, are generally employed due to
their more favorable computational efficiency than direct methods. In fact, iterative
methods, when implemented properly, may require less storage and fewer computing
operations than direct methods (See [55] for more details).

This chapter is to provide background knowledge on research areas relevant to the
rest of the dissertation. The most relevant topics are the convergence rate of iterative
methods and preconditioning techniques that are discussed in Section 2.1. Of several
types of preconditioners in solving large and sparse linear systems, we introduce
incomplete LU (ILU) preconditioner (in Section 2.2) and sparse approximate inverse
(SAI) preconditioner (in Section 2.3) that will be frequently referred later in the

dissertation.

11

www.manaraa.com

2.1 Preconditioned Iterative Methods

Iterative methods are usually employed in solving large and sparse linear systems
because of their computational efficiency. However, they do not have the reliability
of direct methods and often fail in some applications to attain convergence in a
reasonable amount of time [8, 55]. In order to improve the reliability and convergence
rate of iterative methods, preconditioning, which transforms an original linear system

into another equivalent system that is easier to solve, is required.

The Convergence of Iterative Methods

Generally speaking, there are two types of iterative methods, stationary iterative
methods and Krylov subspace (nonstationary) methods. Stationary iterative methods
are old-fashioned and simple to drive, implement, and analyze, but usually not as
effective as Krylov subspace methods. Examples of stationary iterative methods
are the Jacobi method and the Gauss-Seidel method. Krylov subspace methods are
relatively new and can be highly effective, but these methods are harder to drive,
implement, and analyze. Prototypes of Krylov subspace methods are the conjugate
gradient method (CG), the generalized minimal residual method (GMRES), and the
biconjugate gradient method (BiCG) [5].

It has been noticed that the convergence rate of iterative methods are strongly
related to the distribution of eigenvalues of the coefficient matrix of a linear system
Az =b 1,2, 8, 23, 25, 55]. In this subsection, we present a general structure and the
convergence rate of iterative methods.

Stationary iterative methods define a sequence of iterates of the form:
xk+1:G$k+f7 k:():l;"'a (21)

where G is a certain iteration matrix, f is a fixed vector, and xy is an initial guess.

If the iteration converges, then the limit is the solution of the original system Az =

12

www.manaraa.com

b [55].
In order to determine the convergence rate of iterative methods, we begin with

the definition of spectrum and spectral radius.

Definition 2.1.1. The spectrum of a matriz A, denoted by o(A), is the set of all
eigenvalues of A. The spectral radius is the mazimum size of the eigenvalues of A

and denoted by

p(A) = mazi<i<i(|Ai]),

where A1, - -+, A are the eigenvalues of A.

Theorem 2.1.2 [55] shows that the convergence rate of an iterative method strongly

depends on the spectrum of the coefficient matrix A.

Theorem 2.1.2. Let G be a square nonsingular matriz such that p(G) < 1. Then
I — G is nonsingular and the iteration (2.1) converges for any f and xy. Conversely,

if the iteration (2.1) converges for any f and xg, then p(G) < 1.

From the results of Theorem 2.1.2, we note that the spectrum value of the iteration
matrix G is less than 1 is a necessary and sufficient condition for the iteration to
converge.

The rate of convergence of Krylov subspace methods is also strongly related to
the distribution of the eigenvalues of A [8, 36, 55|. For example, the convergence rate
of the conjugate gradient (CG) method depends on the distribution of the eigenvalue
of A, that is, for a symmetric positive definite matrix A, if the matrix has a smaller
spectral condition number and/or eigenvalues clustered around 1, the CG method

usually results in a rapid convergence. This can be seen from the following result [36].

Theorem 2.1.3. Suppose A € R™" is symmetric positive definite and b € R™. If

CG method produces iterates {zy} and K = A\, /A1, where X\, and A\ are the largest

13

www.manaraa.com

and smallest eigenvalues of the matriz A, respectively. Then

N
VE+

Here, the norm || || 4 is the operator norm with respect to the symmetric positive

-

[l — |4 < 2[lz = wollal

definite matrix A. For two vectors (z,y € R"), the inner product with respect to A

is defined as

(z,9)a = y" Az.

The operator norm with respect to A is defined as ||z|[4 = \/(z, %) 4.
In general, Krylov subspace methods often produce rapid convergence when a

matrix A has a clustered spectrum (away from 0) [1, 8, 55].

Preconditioned Iterations

Although computational efficiency of iterative methods induces their wide usage in
solving large and sparse linear systems, they potentially have an issue of slow conver-
gence for linear systems that arise from many applications including fluid dynamics
and electronic device simulation [55]. In these applications, preconditioning plays an
important role for the success of iterative methods because it can improve both the
efficiency and robustness of iterative methods [8, 36, 55].

Preconditioning transforms an original linear system Az = b into another sys-
tem, which has the same solution of the original system, with more favorable eigen-
spectrum properties for an iterative solver. Generally speaking, preconditioning aims
at improving spectral properties of the coefficient matrix. The transformed matrix is
called a preconditioned matriz that expectantly will have a smaller spectral condition
number and/or eigenvalues clustered around 1 [8].

There are three ways to apply preconditioning techniques. If M is a nonsingular

matrix and approximates A, then the linear system of the form:
M 'Az =M b (2.2)

14

www.manaraa.com

has same solution as Az = b. Here, M is a preconditioner, and Equation (2.2) is

preconditioned from the left. Also, the preconditioner can be applied to the right:
AM 'u=b, =M 'u.
In addition, split preconditioning of the form:
M;lAMglu =b x= Mlglu,

is also possible when the preconditioner is available in the factored form M = M Mg,
where M}, and Mp are typically triangular matrices [55].

In order for a preconditioner to be efficient, the construction cost of the precondi-
tioning matrix M should be low, and the computation cost of the inverse of M or the
solution with the matrix M should be inexpensive. That is, a good preconditioner,
M, should be easy to solve with and also cheap to construct and apply [8, 55]. In the
next two sections, we continue discussing two of the most widely used preconditioning

techniques, the incomplete factorization methods and sparse approximate inverses.

The accuracy and stability of preconditioners

The conditioning of a matrix affects the accuracy of the computed solution. A matrix
is said to be ill-conditioned if a small change in the data causes a large change in
the solution, otherwise it is well-conditioned. Ill-conditioning or well- conditioning of
a matrix problem is generally measured by means of a number called the condition

number. The condition number, k, is
k= |[A[||A7Y].

If the condition number of a preconditioner, M !, is large, computations with
the matrix M ! is likely to be inaccurate. The reason is that with a large condition
number, even a small error in the right-hand side of a linear equation may cause a

large-error-in-the solution of the equation. In that case, the preconditioned matrix,

15

www.manaraa.com

M ' A, might be worse conditioned than the original matrix A, and also the precon-
ditioned GMRES method might need more iterations to converge or not converge at
all. However, convergence might happen even if the actual residual norm is still large
when the initial residual norm is large. Such convergence is called a false convergence.

In order to determine a false convergence from a true convergence, we use some
statistical information to estimate condition numbers of the preconditioned matrices.
A statistic “condest”, suggested by Chow and Saad [19], is utilized to estimate the
condition number by calculating ||(LU) 'e||s, where e is the vector of all ones. This
statistics indicates a relation between the unstable triangular solutions and the poorly

conditioned L and U factors.

2.2 Incomplete Factorization Preconditioners

One of the widely used preconditioners is based on incomplete factorization of the co-
efficient matrix A. Incompleteness can be generated during the factorization process,
that is, certain fill-in elements, which are nonzero in the factorization at positions
where the original matrix had a zero, have been discarded. This type of precondi-

tioner produces a decomposition of the form:
A=LU — R,

where L and U are lower and upper triangular matrices, respectively, and R is the
residual or error of the decomposition. Here, the preconditioner is given in a factored
form M = LU, and the efficacy of the preconditioner depends on how well M1
approximates A~ 1.

Now, we describe the ILU(0) factorization, the simplest form of incomplete LU
(ILU) preconditioners and ILUT that is more accurate and the most widely used ILU

preconditioner.

16

www.manaraa.com

ILU(0)

Incomplete LU factorization takes a set P of the matrix entry positions to be precisely
the nonzero pattern of the matrix A and keeps all positions outside this set equal to
zero during the factorization. The set P is generally chosen to enclose all nonzero
positions of A, and a position is called a fill-in position when the position is zero in
A but is not zero in an exact factorization.

ILU(0) factorization is an incomplete LU factorization with no fill-in position.
That is, ILU(0) factorization takes a set P = NZ(A) and entails a preconditioner
M = LU, where L and U have the same nonzero structure as the lower and upper
parts of A, respectively, and NZ(A) is the nonzero positions in A. An example of the
ILU(0) factorization for a five-point matrix is shown in Figure 2.1 [55]. The procedure

of the ILU(0) factorization is described in Algorithm 2.2.1 [55].

Algorithm 2.2.1. The ILU(0) algorithm.

1. Fori=2,....n

2. Fork=1,...,i—1

3. If (i,k) € NZ(A), then

4. Compute a;x = a;x/axk

5. Forj=k+1,...,n

6. If (i,j) € NZ(A), then

7. Compute a;; = a;j — Gix0x;

ILU(0) factorization is rather easy to implement and inexpensive to compute,
and it is effective for certain matrices from low-order discretizations of scalar elliptic
PDEs and diagonally dominant matrices. On the other hand, ILU(0) factorization
often produces a rough approximation to the original matrix. For difficult problems,

the-accuracy-of the ILU(0) factorization may be insufficient to yield an adequate rate

17

www.manaraa.com

..- -==J -=;
Fez, =, FEs, =,
L. el
A LU

Figure 2.1: The ILU(0) factorization for a five-point matrix with five nonzero diago-
nals.

of convergence [8, 54, 55]. In order to obtain better approximation, several alternative

incomplete factorizations have been developed by allowing more fill-in in L and U.

ILUT: A Dual Threshold ILU Factorization

In the process of incomplete factorization, dropped elements are usually determined
by the structure of the matrix A rather than the numerical values of the matrix.
This often derives some difficulties in solving for realistic problems. In order to
remedy this, a few alternative methods are available based on dropping elements

in the Gaussian elimination process according to their magnitude instead of their

18

www.manaraa.com

locations. With these techniques, ILUT (Incomplete LU (ILU) factorization with
a dual threshold) factorization, which selects the dropped elements dynamically, is
one of widely employed alternative methods. This preconditioner utilizes two-step
dropping strategy to control fill-in during its construction phase.

The dropping strategy in ILUT works as the follows: (1) The threshold in L and
U is set by tol. Any element whose magnitude is less than tol (relative to the absolute
value of the diagonal element of the current row) is dropped. (2) Keeping only the
largest [fil elements in the ith row of L and the largest [fil element in the ith row
of U (excluding the diagonal elements) [54, 55]. The ILUT algorithm is presented in

Algorithm 2.2.2 [55]. Note that a;, denotes the ith row of A.

Algorithm 2.2.2. THE ILUT ALGORITHM.

1. Fori=2,...,n

2. W = Gy

3. Fork=1,...i—1

4. If wy # 0, then

5. W = Wi/ Qg

6. Apply a dropping rule to wy,
7. If wy # 0, then

8. W= W — Wy * Ukx

9. Apply a dropping rule to row w

10. Forj=1,...,i—1
11. li,j:wj
12. For j=1,...,n

13. U 5 = Wj

14. w = ()

19

www.manharaa.com

ILUT preconditioner has been one of efficient and robust preconditioners for iter-
ative solvers, and the construction cost of ILUT is not expensive [55, 70]. In addition,
the ILUT preconditioner is efficient when the two dropping parameters tol and [fil
are chosen carefully, and the total storage of L and U is bounded by 2n [fil [55, 70].
In fact, [fil can be viewed as a parameter that helps control memory usage, while tol

helps reduce computational cost.

2.3 Sparse Approximate Inverses

Of the many types of preconditioners, recently sparse approximate inverse (SAI) pre-
conditioners, of which the preconditioning process is just a (sparse) matrix-vector
product operation, have become popular in solving many application problems due
to their potential in parallel implementations [9, 16, 19, 18, 37, 38, 41]. Unlike incom-
plete LU (ILU)-type preconditioners, which need triangular solution procedures that
is difficult to perform on parallel computers, SAl-type preconditioners possess high
degree of parallelism in the preconditioner application phase. Thus, SAI-type precon-
ditioners are interesting alternative of ILU-type preconditioners on high performance
distributed memory parallel computers [6, 7).

For parallelizable preconditioners, several versions of sparse approximate inverse
(SAT) techniques have been developed [13, 16, 20, 21, 37, 41, 69] in the past few years.
In general, there can be three categories to construct SAI techniques; sparse approx-
imate inverses based on Frobenius norm minimization [20, 21, 22, 37, 41], sparse
approximate inverses computed from an ILU factorization [55], and factored sparse
approximate inverses [13, 45]. Each of these categories contains its own advantages
and limitations in the aspects of construction cost, application cost, robustness, and

efficiency [12, 20, 37, 59].

20

www.manaraa.com

Sparse Approximate Inverses based on Frobenius Norm Minimization

Sparse approximate inverses [20, 21, 22, 37, 41] based on Frobenius norm minimization
is the most popular and simple approach for finding approximate inverses. The basic
idea of this approach is to compute a sparse matrix M ~ A ! that minimizes the

Frobenius norm of the residual matrix I — AM:
F(M) = |[I - AM]|%, (2.3)

where ||-|| denotes the Frobenius norm® of a matrix. The minimization problem (2.3)
can be decoupled into the sum of the squares of the 2-norms of the individual columns
of the residual matrix as:
n
11— AMI[5 =) [le; — Amy|[3,
j=1

where e; and m; denote the jth columns of the identity matrix and of the matrix M,
respectively. It follows that the computation of M is equivalent to minimizing the
individual functions

fi(m) = llej — Amyl[3,

forj =1,2,---,n.In other words, each column of M can be computed independently
so that the computation of M can be carried out in parallel. However, the construc-
tion of the sparse approximate inverses based on norm minimization is sometimes
very expensive, and parallel implementations are necessary for them to be practically

useful [4, 37].

Sparse Approximate Inverses Computed from an ILU Factorization

According to Benzi and Tuma [12], sparse approximate inverses computed from an
ILU factorization has a two-phase process, factorization phase and inverting phase.

In other words, an incomplete LU (ILU) factorization A ~ LU is computed firstly by

! Frobenius-norm.is-defined for a matrix A = (aij)nxn as ||A||r = ZZ]':1 a;;2.

21

www.manaraa.com

using standard techniques, and then incomplete factors L and U are approximately
inverted. This approach can produce the computation of a preconditioner with two
phases of incompleteness. As a result, these methods may be difficult to use in

practice [12, 69].

Factored Sparse Approximate Inverses

In this subsection, we discuss factored sparse approximate inverses based on the
incomplete inverse factorizations of A~! [12, 69]. Factored sparse approximate inverse
can be constructed by computing sparse approximations L~ L and U ~ U when
A~' can be factorized A~' = LDU, where L is unit lower triangular, D is diagonal,

and U is unit upper triangular. The factored approximate inverse is then
M =LDUT ~ A1,

where D is a nonsingular diagonal matrix, D =~ D. The weakness of this approach
is the lack of parallelism in the construction phase, but factored sparse approximate
inverses have some advantages over the two approaches previously introduced. The
advantages are that (1) factored sparse approximate inverses often result in better
convergence rates with the same storage requirement, and (2) factored forms are less
expensive to compute [12, 69].

Several researchers [11, 69] considered algorithms to improve the parallelism of
factored approximate inverses so that one can use the advantages of the factored
approximate inverses over the other sparse approximate approaches. Zhang [69] pro-
posed an factored inverse algorithm that is derived from a matrix decomposition
method for inverting nonsymmetric matrices. In this dissertation, we utilized the
factored sparse inverses based on an algorithm from [69] that possesses greater inher-
ent parallelism. The factored inverse algorithm [69] is presented in Algorithm 2.3.1,

and the algorithm returns M = LDU ~ A%

22

www.manaraa.com

Algorithm 2.3.1. FACTORED INVERSE ALGORITHM FOR SPARSE MATRICES [69)].

1. For j =n — 1 with step (-1)

2 Fori=7+1,—n

3 wi = Aji + 3 5—i 1 Aji * Lii
4. Fori=j7+1,—n
5

w; = w; x Dy

6. v, = —W;

7. Fori=7+1,—n

8. Fork=i+1,—n
9. Vg = v — wy * Uy,

10. Fori=j+1,—n

11. Uji = v;

12. Djj = 1/(Ajj + > ki1 Ujk * Agj)
13. Fori=j+1,n

14. wzw = Aij + > i1 Uin * Agj
15. Fori=j+1,n

16. w; = w; ¥ Dy;

17. v = —w;

18. Fori=j+1,—n

19. Fork=1+1,—n

20. Vv = Uy — Wy * L

21. Fori=j+1,—n

22. Lij = v;

Note that L = [Ly, Lo, -, L,] denotes a lower triangular matrix of order n, L;;

represents an (7, j) element in L, and L; is a column vector of length n with L;; = 1,7 =

23

www.manharaa.com

1,2,---,n. Similarly, U = [Uy, Us, - - - , U,] represents an upper triangular matrix of
order n, U;; is an (4, j) element in U, and U; denotes row vectors of length n with

Ui =1,i=1,2,--- n. A diagonal matrix is denoted by D = diag[D1, Das, - - - , Dyy].

Copyright® Eun-Joo Lee, 2008.

24

www.manharaa.com

Chapter 3 Incomplete LU Preconditioning Enhancement Strategies

In this chapter, we discuss the inaccuracy problems associated with incomplete LU
(ILU) factorization. In order to improve inaccurate preconditioners produced by ILU
factorizations, two preconditioning enhancement strategies are presented. The strate-
gies employ the elements that are dropped during the ILU factorization and utilize
them in different ways by separate algorithms. The first strategy (error compensa-
tion) applies the dropped elements to the lower and upper triangular parts of the
ILU factorization to compute a new error compensated LLU factorization. The other
strategy (inner-outer iteration), which is a variant of the ILU factorization, embeds
the dropped elements in its iteration process.

This chapter is organized as follows: In Section 3.2, preconditioning enhancement
strategies arising from ILU preconditioning and their analyses are presented. The
experimental results are in Section 3.3, and the concluding remarks are discussed in

Section 3.4.

3.1 Introduction

Incomplete LU (ILU) factorization, which is constructed from the incomplete lower-
upper factorization, is one of the most popularly used preconditioners. However,
a common problem with such ILU preconditioners is that their accuracy may be
insufficient to yield an adequate rate of convergence. This problem is usually caused
by the difficulty in determining even a small number of parameters or threshold
values for the ILU factorizations for some particular matrices. In addition, there still
remains as a tradeoff problem between the factorization accuracy and the costs of the
computation and memory associated with the factorization.

In the form of an ILU factorization by incorporating the error or residual matrix,

25

www.manaraa.com

E. we have

A=LU+E, (3.1)

where L and U are the lower and upper parts of A, respectively. The elements of
the error matrix E are just discarded in standard ILU factorizations. It has been
known that the size of the error matrix F directly affects the convergence rate of the
preconditioned iterative methods [32, 55]. Moreover, the quality of a preconditioning
step is directly related to the size of both (LU)™' and E, that is, a high quality
preconditioner must have an error matrix that is small in size [31, 68].

Based on the understanding of these facts, we propose two new precondition-
ing accuracy enhancement strategies that exploit the error values dropped in the
factorization to improve the accuracy of ILU factorizations. This then leads us to
the idea of the error compensation strategy that utilizes the error matrix before
the start of the preconditioned iteration process. After acquiring an ILU factoriza-
tion with a preconditioner, we add the error matrix £ to L and U to obtain an
error compensated factorization LU. The accuracy of using LU is increased signif-
icantly in some cases, compared with that of using LU directly, in the sense that
|E(=A-LO)|| < ||E(=A-LU)|.

The other preconditioning accuracy enhancement strategy uses the error matrix
during the preconditioned iteration process. This can be considered as a variant of the
LU solver with an error embedded LU approach and results in an inner-outer iteration
process. Numerical results of the inner-outer iteration strategies are provided to show
that this algorithm requires fewer outer iterations to converge. In other words, a few
inner iteration at each preconditioning step reduces the number of outer iterations of
the preconditioned iterative solver. Note that in order to collect the elements during
the ILU factorization process, additional computation cost and some memory spaces
are required to keep these elements. This, however, can be negligible as low cost

storages become available.

26

www.manaraa.com

3.2 Preconditioning Accuracy Enhancement Strategies

ILU factorizations are made incomplete by dropping carefully chosen nonzero ele-
ments to make the factorizations more economical to store, compute, and solve with
it. Each nonzero element that is dropped contributes to the “error” in the factoriza-
tion [19]. In this section, we assume that ILU factorizations in question are stable,
and propose an error compensation algorithm and an inner-outer iteration algorithm

to improve the accuracy of the (inaccurate) ILU factorizations.

Matrix Error Compensation Strategy

We propose an algorithm to improve the preconditioning accuracy by reducing the
size of the error matrix £ and (LU) 'FE in Equation (3.1). By switching the matrix

A and LU, Equation (3.1) can be written as:
E=A-LU (3.2)

Then the error matrix £ can be separated into two parts, corresponding to the nonzero

structures of L and U, in the following way:
E=E+Ey,

where F; and FE, are the strictly lower and upper triangular parts of E, respectively.
In order to acquire error compensated L and [NJ, the separated error matrices, E; and
E,, are now combined with the original lower part (L) and upper part (U) of the

preconditioned matrix:
L=L+E, U=U+E,.

These new lower triangular part L and upper triangular part U are then used as the
preconditioner instead of the original L and U. In other words, L and U are used

in_the preconditioning steps, i.e., we solve (LU)e = r instead of (LU)e = r at each

27

www.manaraa.com

preconditioning step. Here e and r are the error and residual vectors of the current
approximate solution. In the experimental results presented in Section 3.3, we will see
that replacing LU solver with the new LU results in a more accurate preconditioner.
In many cases, the size of the error matrix with the new LU is smaller than that with
the original LU.

In order to provide a better picture of the algorithm, an ILU factorization in which
the error compensated L and U improves the accuracy of the original factorization is

given in the following: The ILU(0) factors L and U of a given matrix

2 1 1
A=1120
10 2
are
1 00 2 1 1
L=1o0510[; U=1|o015 0 [,
05 0 1 0 0 15

from which we can compute the error matrix £ = A — LU as

The error matrix F is then split into two parts, £, and FE,. We add FE; and F, to
the original incomplete lower and upper triangular parts of A. This results in a new

incomplete LU factors

1 0 0 9 1 1
L=los5 1 ol,. U=|o015 —05
05 —05 1 0 0 15

28

www.manharaa.com

From the above A, L, and U, we can obtain an new error matrix E as:

0 0.25 —0.25
Table 3.1 presents the comparisons of the sizes of the error matrices in the example
given above. The sizes of the preconditioned error matrix for the error compensated
preconditioner and the original preconditioned matrix are measured in the 2-norm
and the Frobenius norm. The case using error compensated preconditioned matrix

reduces the error norm by 36% on average. The error compensation algorithm can

Table 3.1: Comparison of the size of preconditioned error matrices £ and E.

Norm FE FE (LU)*IE (LU)*IE
2-norm 0.5 | 0.3536 0.4082 0.2940
Frobenius norm | 0.7071 | 0.3536 0.5270 0.2940

have four different implementations. The above description assumes that both the L
and U factors are compensated. If none of them is compensated, we have the standard
ILU preconditioner. If either one of them, but not both factors, is compensated, we

have two forms of partial error compensations.

An Inner-Outer Iteration Process

In this subsection, we describe an error embedded variant of ILU preconditioning
process to compensate dropped elements during the ILU factorization. In solving a
linear equation with a standard preconditioned iterative solver, the preconditioning
step is an LU solution process with an ILU factorization type preconditioner, i.e., to
solve (LU)e = r for the residual vector r of the current approximate solution and to
get an approximate correction vector e. For notational convenience, we denote the
current approximate solution as . The current residual vector is ¥ = b — AZ. The

ideal preconditioning step is to solve Aée = 7 and to correct the approximate solution

29

www.manaraa.com

T to get the exact solution as (Z + €). Since solving Aé = 7 is as expensive as solving
the original system Az = b and is thus impractical in a preconditioning step, we can
again use an iteration procedure to approximately solve Ae = 7 to achieve a good
preconditioning effect. If the error matrix is available, we can split the matrix A as

in Equation (3.1), so, for an idealized preconditioning step, we have
(LU + E)e =, (3.3)

or

LUe+ Ee =r. (3.4)

As a stationary iteration process, Equations (3.3) and (3.4) can be rewritten by:
LU®) = — Belk),

and

e®) — (LU) ' (r — Ee®) (3.5)

respectively. This iteration process starts with e(Y) = 0, and LUe™ = r is just the
standard one step ILU preconditioning procedure. Better preconditioning effect can
be achieved by performing a few iterations at each preconditioning step. This will
constitute an inner-outer iteration scheme and is well-known for the preconditioned
Krylov method, as each outer Krylov iteration step is preconditioned by a series of
inner stationary iteration steps.

The necessary and sufficient condition to converge for the inner iteration process,
given by Equation (3.5), is that the spectral radius of the iteration matrix (LU) ' E is
smaller than 1. This is, of course, not automatically guaranteed. However, we found
that the inner iteration process usually converges, when the ILU factorization of the
original matrix A is stable and the LU factor is not an extremely poor approximation
to the original matrix A. We point out that the inner-outer iteration strategy is not

a.new one, but here we study it in a systematic way.

30

www.manaraa.com

Analysis

In order to validate the presented algorithms, the comparison of the size of the error
matrices of a five-point matrix is given in Table 3.2. A five-point matrix (of a finite
difference discretization of a Poisson equation), A, of size n = 400 corresponding
to an ng, x n, = 20 x 20 mesh is used. The sizes of the error matrix, ¥, from the
original preconditioner and the new error matrix, E’, from the error compensated

preconditioner are measured in the 2-norm and the Frobenius norm. For the case

Table 3.2: Comparison of the size of preconditioned error matrices £ and E.

Norm E E | (LU)'E | (LU)'E | (LU)'E | (LU) 'E
2-norm 0.5788 | 0.3582 0.9276 0.8889 0.9109 0.9106
Frobenius norm | 7.7958 | 3.2058 3.6129 2.4812 3.1488 3.1447
Spectral radius 0.9276 0.8885 0.9098 0.9098

using the error compensated algorithm, the norms (2-norm and Frobenius norm) in
columns 2 and 3 in Table 3.2 show the fact that the norms of the new error matrix are
smaller than the norms of the original error matrix, and also the norms (2-norm and
Frobenius) in columns from 4 to 7 show that all the norms (2-norm and Frobenius)
of the corresponding matrices in columns from 5 to 7 are smaller than the norms in
column 4. In addition to that, from the values in the last row of Table 3.2, we can
see that the inner iteration process converges, since the spectral radii of the (LU)'E

and (Zﬁ)’lf? satisfy the necessary and sufficient condition for convergence.

3.3 Experimental Results

We present numerical results from the experiments by solving sparse matrices with
our algorithms and some preconditioners. The preconditioned iterative solver we
employed was GMRES(20), with ILU type preconditioners, ILU(0) and ILUT [54].
For all linear systems, the right-hand side was generated by assuming that the solution

is.a.vector.of all ones.. The initial guess was a zero vector. We set the iteration to be

31

www.manaraa.com

terminated when the ls-norm of the initial residual is reduced by at least seven orders
of magnitude, or when the number of iterations reaches 200. The computations were
carried out in double precision arithmetics on a 64-bit Sun-Blade-100 workstation

with a 500 MHz UltraSPARC III CPU and 1 GB of RAM. The set of sparse matrices

Table 3.3: Description of the test matrices.

Matrix Description n nnz cond
ADD32 Computer component design 32-bit adder 4960 | 23884 | 2.1E+402
BFW398A Bounded Finline Dielectric Waveguide 398 | 3678 | 7.6E+4+03
CDDE1 Model 2-D Convection Diffusion Operator

pl=1, p2=2, p3=30 961 | 4681 | 4.1E+03
CDDES3 Model 2-D Convection Diffusion Operator

pl=1, p2=2, p3=80 961 | 4681 | 1.0E+04
HOR 131 Flow network problem 434 | 4710 | 1.3E+05
JPWH991 Circuit physics modeling 991 | 6027 | 7.3E402
LOP163 LOPSI Stochastic Test Matrix 163 935 | 3.4E+07
MHD3200B | Alfven Spectra in Magneto hydrodynamics 3200 | 18316 | 2.0E+13
MHD416B Alfven Spectra in Magneto hydrodynamics 416 | 2312 | 5.1E+09

MHD4800B | Alfven Spectra in Magneto hydrodynamics 4800 | 27520 | 1.0E+4+14
ORSIRRI1 Oil reservoir simulation - generated problems | 1030 | 6858 | 1.0E+02
ORSIRR2 Oil reservoir simulation - generated problems | 886 | 5970 | 1.7TE+05
ORSREG!1 Oil reservoir simulation - generated problems | 2205 | 14133 | 1.0E4-02

PDE225 Partial Differential Equation 225 | 1065 | 1.0E+402
PDE2961 Partial Differential Equation 2961 | 14585 | 9.5E402
PDE9Y00 Partial Differential Equation 900 | 4380 | 2.9E+402
PORES2 Reservoir modeling Reservoir simulation 1224 | 9613 | 3.3E4-08
PORES3 Reservoir modeling Reservoir simulation 532 | 3474 | 6.6E405
SAYLR1 Saylor’s petroleum engineering/reservoir

simulation matrices 238 | 1128 | 1.6E409
SAYLRA4 Saylor’s petroleum engineering/reservoir

simulation matrices 3564 | 22316 | 1.0E4-02

SHERMANT | Oil reservoir simulation challenge matrices 1000 | 3750 | 2.3E+04
SHERMAN4 | Oil reservoir simulation challenge matrices 1104 | 3786 | 7.2E+403
SHERMANS5 | Oil reservoir simulation challenge matrices 3312 | 20793 | 3.9E4-05
WATT1 Petroleum engineering 1856 | 11360 | 5.4E409

that we used for our experiments are from the Harwell-Boeing Sparse Matrix Test
Collection [29]. A brief description of each matrix of the experiment set is given in
Table 3.3. In the table, the order, the number of nonzero entries, and the condition

number of the matrix are denoted by n, nnz, and cond, respectively. All tested

32

www.manaraa.com

matrices do not have zero diagonals and the ILU factorizations are stable.

Preconditioning with Error Compensation Strategies

Numerical experiments of testing the error compensation algorithm with different
implementations are presented. ILU(0) and ILUT preconditioners are used. In ILUT,
we chose the dropping tolerance and fill-in parameter to be 0.1 and 5, respectively,
for all test problems.

Table 3.4 reports the number of preconditioned GMRES (PGMRES) iterations
with and without different error compensation strategies. The data in the columns
marked “No” are those of the standard preconditioning strategy, i.e., no error com-
pensation strategy was used. The columns marked “Full” indicate that both the L
and the U parts were compensated. Similarly, the columns marked “Upart” means
that only the U part was compensated, and the columns marked “Lpart” means that
only the L part was compensated. The value “-1” in the table indicates the failure of

convergence within the maximum number (200) of allowed iterations.

Table 3.4: Comparison of the number of PGMRES iterations with and without dif-
ferent error compensation strategies.

ILU(0) ILUT

Matrix No | Full | Upart | Lpart No | Full | Upart | Lpart
ADD32 81 39 40 40 16 15 -1 15
BFW398A -1 | 150 -1 196 -1 -1 -1 -1
HOR131 -1 | 183 -1 -1 -1 -1 -1 -1
JPWH991 29 20 24 24 32 21 25 24
LOP163 -1 88 98 176 18 19 18 19
MHD3200B 5 4 4 4 || 164 33 76 101
MHD416B 4 4 4 4 || 137 32 63 77
MHD4800B 4 3 4 3 || 148 33 76 107
PDE225 30 16 21 22 16 11 15 13
PDE2961 -1 91 103 126 85 66 74 77
PDE900 61 46 53 55 33 22 30 27
SHERMANT1 | 116 62 76 75 || 107 87 -1 94
SHERMAN4 | 143 | 107 124 128 || 136 | 101 117 116
SHERMANS | 101 73 77 98 -1 | 145 -1 169
WATT1 178 | 114 115 95 || 108 85 94 121

33

www.manaraa.com

Each column of Table 3.4 shows the number of PGMRES iterations. The number
of (preconditioned) iterations, especially for solving the matrices ADD32, BFW398A,
HOR131, LOP163, PDE2961, SHERMAN1, SHERMANS, and WATT1, are greatly
reduced with the error compensation strategies in the ILU(0) preconditioner, com-
pared with the standard preconditioner ILU(0). In addition, the number of iterations
for solving the matrices MHD and SHERMANS are reduced with the error compen-

sation strategies in ILUT, compared with the standard preconditioner ILUT.

+ Org
— Full
= UPart
= = Lpart

+ Org
— Full "
= UPart 1 1° |\
= - Lpart

Residual norm

-10

I I I I I I I I I I I I I I I I I
0 20 40 60 80 100 120 140 160 180 200 0 20 40 60 80 100 120 140 160 180
Number of iterations Number of iterations

(a) PDE2961 Matrix with ILU(0) (b) MHD3200B Matrix with ILUT
Figure 3.1: The convergence curves for the PDE2961 and MHD3200B matrices.

We can see that for most of the test matrices, the use of the error compensation
strategies reduces the number of PGMRES iterations. Furthermore, the full error
compensation strategy is shown to be more robust than both the L part and the U
part partial error compensation strategies. For the two partial error compensation
strategies, their performance seems to be comparable. In order to provide better
understanding of this, we present Figure 3.1 that shows the PGMRES convergence
behavior for PDE2961 and MHD3200B matrices. This represents comparisons of the
number of PGMRES iterations of PDE2961 and MHD3200B matrices with ILU(0)
and ILUT, respectively, along with and without the error compensation strategies.

Table 3.5 presents. the total CPU processing time which includes the precondi-

34

www.manaraa.com

Table 3.5: Comparison of CPU time in seconds with the different error compensation
strategies.

ILU(0) ILUT

Matrix No Full Upart Lpart No Full Upart Lpart
ADD32 1.1E400 | 1.0E400 | 9.9E-01 | 9.8E-01 || 1.2E+00 | 1.2E+00 N/A | 1.1E400
BFW398A N/A | 1.9E-01 N/A | 1.9E-01 N/A N/A N/A N/A
HOR131 N/A | 2.1E-01 N/A N/A N/A N/A N/A N/A
JPWH991 7.0E-02 | 8.9E-02 | 7.9E-02 | 7.9E-02 1.1E-01 | 1.5E-01 | 1.3E-01 | 1.3E-01
LOP163 N/A | 2.9E-02 | 3.9E-02 | 5.0E-02 6.0E-02 | 29E-02 | 4.9E-02 | 5.0E-02
MHD3200B 1.8E-01 | 2.0E-01 | 2.2E-01 | 2.1E-01 8.8E-01 | 4.0E-01 | 5.9E-01 | 6.9E-01
PDE225 1.9E-02 | 2.9E-02 | 1.9E-02 | 3.9E-02 1.9E-02 | 2.9E-02 | 1.9E-02 | 4.9E-02
PDE2961 N/A | 5.6E-01 | 5.8E-01 | 7.1E-01 || 1.2E4+00 | 1.4E+00 | 1.3E4+00 | 1.4E+00
SHERMAN1 1.5E-01 | 1.1E-01 | 1.1E-01 | 1.2E-01 24E-01 | 1.9E-01 N/A | 2.1E-01
WATT1 5.1E-01 | 4.9E-01 | 4.3E-01 | 3.9E-01 7.7E-01 | 7.7E-01 | 6.9E-01 | 7.4E-01

tioner construction time with different error compensation strategies. The listed
results in Table 3.5 are concerned with the results listed in Table 3.4. “N/A” in-
dicates the failure of computation since the number of GMRES iteration reached
the maximum number (200). The total CPU time for solving the matrices (ADD32,
BFW398A, HOR131, LOP163, MHD3200B, PDE2961, SHERMAN1, and WATT1)
is reduced by using the error compensation strategies with ILU(0)/ILUT. This im-
plies that as the number of overall iterations are greatly decreased, the CPU time is
also reduced even though we need extra processing time for implementing the error

compensation strategies.

Preconditioning with Inner-Outer Iteration Strategies

In this subsection, we present numerical experiments of the inner-outer iteration
strategy with different settings of the number of inner iterations. Table 3.6 reports the
number of preconditioned GMRES (PGMRES) iterations with respect to each setting.
The data in the columns marked “1-Its” are those of the standard preconditioning
strategy, i.e., no additional iteration beyond the standard preconditioning procedure

was used, whereas each column marked with from “2-Its” to “4-Its” indicates inner

35

www.manaraa.com

iteration steps of 2 to 4, respectively, that are performed at each preconditioning
step. Also, the value “-1” in the table denotes the failure of convergence within the

maximum number (200) of allowed iterations.

Table 3.6: Comparison of the number of PGMRES iterations with different number
of inner iterations.

ILU(0) ILUT

Matrix 1-Its | 2-Its | 3-Its | 4-Its || 1-Its | 2-Its | 3-Its | 4-Its
ADD32 81 38 43 27 16 9 7 6
BFW398A -1 117 116 50 -1 -1 -1 -1
JPWH991 29 15 13 10 32 18 13 11
LOP163 -1 110 98 66 18 8 7 5
ORSIRR1 41 22 20 16 50 25 30 17
PDE225 30 16 10 8 16 8 7 5
PDE900 61 31 18 15 33 16 11 9
SHERMAN1 116 52 57 32 107 50 47 30
SHERMAN4 143 65 46 33 136 60 36 26
SHERMANS5 101 54 39 29 -1 87 72 57
WATT1 178 66 53 36 108 49 39 31

Table 3.6 shows that the inner-outer iteration strategies reduce the number of
PGMRES iterations for most of the tested matrices. Especially, ILU(0) with the
inner-outer iteration strategies is shown to be effective for solving ADD32, BEFW398A,
LOP163, PDE225, PDE900, SHERMAN, and WATT1 matrices. ILUT with different
number of inner-outer iteration strategies works well on the PDE and SHERMAN
matrices.

Figure 3.2 shows that the number of PGMRES iterations is decreased as the num-
ber of inner iterations is increased for solving the LOP163 and SHERMANS matrices.
In the figure, “ILU(0)” and “ILUT” denote the standard ILU(0) and ILUT precondi-
tioner, respectively. Also, “2-Its,” “3-Its,” and “4-Its” represent the preconditioners
with inner iteration steps of 2, 3, and 4, respectively.

In Table 3.7, we compare the total CPU processing time in seconds with and
without the inner-outer iteration strategies. In general, larger number of inner iter-
ations reduces the number of outer iterations needed for convergence. However, the

reduction-of the-number of outer iterations does not always lead to the reduction of

36

www.manaraa.com

oIt
— 2-Its
v 3-lts
= - 4-lts

~ILU©)
— 2-Its q 10 ¢
=3l
= - 4-ts

Residual norm
Residual norm

10' I I T I I I I I I 10' I I I I I I I I I
0 20 40 60 80 100 120 140 160 180 200 0 20 40 60 80 100 120 140 160 180 200
Number of iterations Number of iterations

(a) The LOP163 matrix with ILU(0) (b) The SHERMANS matrix with ILUT
Figure 3.2: The convergence curves for the LOP163 and SHERMANS matrices.

Table 3.7: Comparison of CPU time in seconds of ILU(0) and ILUT with different
number of inner iterations.

ILU(0) ILUT

Matrix 1-Its 2-Its 3-Its 4-Tts 1-Its 2-Its 3-Its 4-Its
ADD32 1.1IE4+00 | 1.1E400 | 1.4E400 | 1.2E400 1.2E400 | 1.2E400 | 1.5E400 | 1.3E400
BFW398A N/A 1.7E-01 2.4E-01 1.6E-01 N/A N/A N/A N/A
JPWH991 7.0E-02 7.0E-02 8.9E-02 7.0E-02 1.1E-01 1.1E-01 1.3E-01 1.2E-01
LOP163 N/A 4.9E-02 5.9E-02 3.9E-02 6.0E-02 4.9E-02 7.0E-02 3.9E-02
ORSIRR1 9.0E-02 1.3E-01 1.1E-01 1.2E-01 1.4E-01 1.7E-01 1.7E-01 1.7E-01
PDE225 1.9E-02 1.9E-02 1.9E-02 1.9E-02 1.9E-02 2.9E-02 2.9E-02 2.9E-02
SHERMAN1 1.5E-01 1.0E-01 1.3E-01 1.2E-01 2.4E-01 1.7E-01 2.1E-01 1.8E-01
WATT1 5.1E-01 3.9E-01 3.7E-01 3.6E-01 7.7E-01 5.9E-01 5.9E-01 5.8E-01

the total CPU time, as shown in Table 3.7. This is because that the cost of employ-
ing more inner iterations sometimes outweighs the savings obtained in the reduction
of the number of outer iterations, as each outer iteration becomes more expensive
to conduct. For the purpose of maintaining robustness, however, two or three inner

iterations may be used in each outer iteration.

37

www.manaraa.com

Comprehensive Results: Comparisons between Error Compensation and

Inner-Outer Iteration Strategies

In this section, we show the comparison of the number of PGMRES iterations with
different enhanced preconditioning strategies. The inner-outer iteration strategy is

implemented with two inner iterations in this comparison.

Table 3.8: Comparison of the number of PGMRES iterations with and without dif-
ferent error compensation strategies.

ILU(0) ILUT

Matrix No | Full | 2-Its | Both | BothL No | Full | 2-Its | Both | BothL
BFW398A -1 | 150 117 81 88 -1 -1 -1 -1 -1
CDDE1 -1 | 102 94 55 77 || 164 | 102 66 44 54
CDDE3 -1 -1 -1 185 -1 -1 -1 196 198 175
ORSIRR1 41 40 22 22 22 50 41 25 22 25
ORSIRR2 40 41 22 22 22 51 43 25 24 25
ORSREG1 51 50 22 24 25 52 52 26 22 25
PDE2961 -1 -1 -1 -1 -1 85 66 51 31 47
PDE900 61 46 31 22 27 33 22 16 16 15
PORES2 117 | 148 -1 -1 82 -1 -1 -1 -1 -1
PORES3 108 64 52 44 54 || 121 | 127 88 53 82
SAYLR1 33 33 16 16 15 75 -1 24 31 24
SAYLR4 -1 -1 185 163 -1 -1 -1 -1 187 -1
SHERMANI1 | 116 62 52 43 52 || 107 87 50 51 50
SHERMAN4 | 143 | 107 65 43 55 || 136 | 101 60 43 37
SHERMANS | 101 73 54 44 50 -1 | 145 87 76 79
WATT1 178 | 114 66 40 69 || 108 85 49 37 49

Table 3.8 shows the comparison of the number of PGMRES iterations with dif-
ferent enhanced preconditioning strategies. The data in the columns marked “Both”
and “BothL”mean that applying “Full” and “Lpart” followed by “2-Its”. The data
in the Table 3.8 indicate that most of the proposed strategies are of benefit to reduce
the number of PGMRES iterations, and show that “Both” (the error compensation
strategy with the L and U parts followed by the inner-outer iteration strategy) has
best results for almost all tested matrices; 12 (8) matrices have best results with the
“Both,” and 3 (2) matrices with the “2-Its” (inner-outer iteration strategy), in the

context of ILU(0) (ILUT). Also, “BothL” (the error compensation strategy with the

38

www.manaraa.com

L part only followed by the inner-outer iteration strategy) is best to 4 (5) matrices
with ILU(0) (ILUT), respectively.

Specifically, Table 3.8 indicates that most of the proposed strategies are of benefit
to reduce the number of PGMRES iterations. In the context of ILU(0), 13 matrices
have best results with the inner-outer iteration strategy, and 8 matrices with the error
compensation strategies. However, the error compensation strategy with the L part
only is also best for 4 matrices in the sense of the least number of GMRES iterations
only. In the context of ILUT, 13 matrices have best results with the inner-outer
iteration strategy, and 5 matrices with the error compensation strategy. As a result,
the error compensation strategy followed by the two inner-outer iteration strategy

outperformed the other error compensation strategies based on this experiment.

Table 3.9: Comparison of CPU time in seconds with the different error compensation
strategies in ILU(0) preconditioning.

ILU(0)

Matrix No Full 2-Its Both BothL
BFW398A N/A | 1.9E-01 1.7E-01 1.9E-01 | 1.6E-01
CDDE1 N/A | 1.6E-01 2.1E-01 1.5E-01 | 1.8E-01
CDDE3 N/A N/A N/A 3.4E-01 N/A

ORSIRR1 9.0E-02 | 1.3E-01 1.3E-01 1.4E-01 | 1.5E-01
ORSIRR2 8.9E-02 | 1.1E-01 | 9.9E-02 1.2E-01 | 1.1E-01
ORSREG1 2.6E-01 | 3.9E-01 2.7E-01 | 3.3E-01 | 3.1E-01

PDE2961 N/A N/A N/A N/A N/A
PDE900 9.0E-02 | 1.0E-01 | 8.9E-02 | 9.0E-02 | 8.9E-02
PORES2 2.7E-01 | 45E-01 N/A N/A | 3.9E-01
PORES3 7.9E-02 | 7.9E-02 | 9.0B-02 | 1.0E-01 | 1.0E-01
SAYLRI 29E-02 | 19E-02 | 1.9E-02 | 29E-02 | 1.9E-02
SAYLR4 N/A N/A | 2.1E+00 | 2.4E+00 N/A

SHERMAN1 | 1.5E-01 | 1.1E-01 1.0E-01 1.1E-01 | 1.2E-01
SHERMAN4 | 1.6E-01 | 1.6E-01 1.3E-01 1.2E-01 | 1.4E-01
SHERMANS | 6.9E-01 | 7.4E-01 7.3E-01 7.7E-01 | 7.6E-01
WATT1 5.1E-01 | 4.9E-01 | 3.9E-01 | 3.4E-01 | 4.5E-01

Table 3.9 and Table 3.10 present the total CPU processing time which includes the
preconditioner construction time with different error compensation strategies. The
listed results in Table 3.9 and Table 3.10 are concerned with the results listed in

Table 3.8. “N/A” indicates the failure of computation since the number of GMRES

39

www.manaraa.com

Table 3.10: Comparison of CPU time in seconds with the different error compensation
strategies in ILUT preconditioning.

ILUT

Matrix No Full 2-Its Both BothL
BFW398A N/A N/A N/A N/A N/A
CDDE1 3.6E-01 2.7E-01 3.2E-02 2.4E-01 2.8E-01
CDDE3 N/A N/A 5.9E-01 6.8E-01 6.4E-01
ORSIRR1 1.4E-01 1.9E-01 1.7E-01 2.0E-01 2.0E-01
ORSIRR2 1.3E-01 1.7E-01 1.4E-01 1.7E-01 1.6E-01
ORSREG1 3.9E-01 5.8E-01 3.9E-01 4.7E-01 4.4E-01
PDE2961 1.2E+400 | 1.3E+00 | 1.4E+400 | 1.6E4+00 | 1.6E+00
PDE900 1.2E-01 1.4E-01 1.3E-01 1.4E-01 1.4E-01
PORES2 N/A N/A N/A N/A N/A
PORES3 1.4E-01 1.6E-01 1.6E-01 1.6E-01 1.8E-01
SAYLR1 3.9E-02 N/A 2.9E-02 3.9E-02 2.9E-02
SAYLR4 N/A N/A N/A | 4.2E400 N/A
SHERMAN1 2.4E-01 1.9E-01 1.7E-01 1.9E-01 1.2E-01
SHERMAN4 2.9E-01 2.8E-01 2.2E-01 2.0E-01 2.0E-01
SHERMAN5 N/A | 1.6E4+00 | 1.3E400 | 1.5E400 | 1.4E+00
WATT1 7.7E-01 7.7E-01 5.9E-01 5.6E-01 6.9E-01

iterations reached the maximum number(200). This implies that as the number of
overall iterations are greatly decreased, and the CPU time is also reduced even though

we need extra processing time for implementing the error compensation strategies.

3.4 Conclusions and Remarks

We proposed preconditioning accuracy enhancement strategies to augment ILU (in-
complete LU) factorizations in case that the initial factorizations are found to be
inaccurate. The strategies recompense the dropped elements during the incomplete
factorization before/during the preconditioned iteration processes. Results of ex-
tensive numerical experiments demonstrated that the proposed strategies are quite
promising and effective in helping reduce the number of PGMRES iterations, and a
noticeable improvement in enhancing the accuracy of ILU factorizations. Further-
more, the total computation time for solving sparse linear system was reduced in

many cases even though extra processing time was used for the proposed strategies.

40

www.manaraa.com

Copyright® Eun-Joo Lee, 2008.

41

www.manharaa.com

Chapter 4 Hybrid Reordering Strategies

Incomplete LU factorization preconditioning techniques often cause preconditioners
to be unstable and/or inaccurate due to very small pivots encountered during the
factorization in solving indefinite matrices. In this chapter, we concern ourselves with
improving the stability and accuracy of preconditioners in solving indefinite matrices
using two diagonal reordering algorithms that replace small pivots with large values
on the main diagonal by searching for entries of a single nonzero element and/or

maximum absolute value.

4.1 Introduction

Incomplete LU (ILU) preconditioning techniques have been successful for solving
many symmetric and nonsymmetric matrices, however, they may encounter difficulty
when the matrix to be solved is indefinite, i.e., when the matrix has both positive
and negative eigenvalues (See Figure 4.1 for the examples of indefinite matrices). If
matrix A has positive and negative eigenvalues, M 'A attempts to move negative
eigenvalues to the positive side and to be clustered around 1. But an unsuccessful
preconditioning may move some of the eigenvalues to be close to 0, which causes
M ~'A to have a very large condition number.

According to Chow and Saad [19], there are at least two reasons which make ILU
factorization approaches difficult in solving indefinite matrices. The first reason can
be due to small or zero pivots in an indefinite matrix, which may lead to unstable
and inaccurate factorizations [44]. In addition, small pivots are usually related to
small or zero entries on the main diagonal of the matrix, so an indefinite matrix
with zero diagonal entries may have higher chances of encountering zero pivots if

the matrix is also nonsymmetric [54, 68]. Secondly, unstable triangular solutions can

42

www.manaraa.com

Harwell-Boeing/ecanaus/ mahindos

1.36407
.\\\ ' s
\‘\\\ i\f\ N
I - N .
o AN ‘
S
L : “
~ \ T
. ‘k\‘l
h REE
w\\ e \
- o I‘
125841258 7682 entries —1.53e+07
(a) MAHINDAS Matrix
— Harwell—Boeing,/smtape/shl_400
£.06e403

BB3xG83 1712 entries

(b) SHL_400 Matrix
Figure 4.1: The MAHINDAS and SHL_400 matrices [50].

happen when ||L7'|| and |[U~!|| are extremely large while the off-diagonal elements
of L and U are reasonably bounded. Such problems are usually caused by very small
pivots [19, 34, 68].

Since small pivots are often the origin of stability problems in computing ILU fac-
torization on an indefinite matrix, we can expect a better performance if small pivots
could be replaced with some large values on the diagonal of the matrix. Based on the
idea mentioned above, several researchers [10, 27, 28, 30, 31] focused on permuting

large entries onto the main diagonal of an indefinite matrix before using direct or

43

www.manharaa.com

iterative solvers to solve the matrix. For example, Duff and Koster [30, 31] exploited
bipartite matching algorithms and scaling techniques for computing permutations of
a sparse matrix. Their reordering and scaling algorithms have an effect on the perfor-
mance of various solution methods for solving sparse matrices. In the experimental
studies with the Duff and Koster’s [31] algorithms, Benzi et al. [10] considered match-
ing algorithms such as maximum transversal, maximum product transversal, and the
bottleneck transversal with symmetric permutations. Their preprocessing step still
requires complicated matching algorithms with several symmetric permutations.

As a part of the continuous efforts to develop approaches to replace small pivots
with large values on the main diagonal, we present two diagonal reordering algorithms
that are computationally inexpensive but efficient in the aspect of reordering perfor-
mance for indefinite matrices, and also propose new hybrid reordering strategies that
are composed of a combination of the two proposed diagonal reorderings and the
nondecreasing degree algorithm [68] described in Section 4.2.

The main idea of the diagonal reordering algorithms lies on searching for entries of
(1) single nonzero element and/or (2) the maximum absolute value, to be placed on
the main diagonal for computing a nonsymmetric permutation. SINGLE-ELEMENT-
REORDERING described in Algorithm 4.2.2 examines the rows and the columns which
have only one nonzero element for the permutation so that the main diagonal of
the permuted matrix has more nonzero entries than the original one. On the other
hand, MAXIMUM-VALUE-REORDERING described in Algorithm 4.2.3 searches for the
entries, which have the maximum absolute value for each column for the permutation,
to maximize the absolute value on the diagonal entries for each column.

In order to augment the effectiveness of the nonsymmetric diagonal reorderings,
we apply a symmetric nondecreasing degree algorithm to reduce the amount of fill-in
during the ILU factorization. This algorithm is used to reorder the rows of the matrix

in a decreasing degree fashion; i.e., the rows with smaller degrees are listed first and

44

www.manaraa.com

those with larger degrees are listed last [68]. It will be defined later.

In Section 4.3, we present the numerical results to demonstrate the performance
of each reordering strategy. A set of sparse indefinite matrices were used in the ex-
periments. We first performed each reordering strategy as a preprocessing step. In
order to solve the reordered matrices, we employed several ILU type preconditioners
and a preconditioned iterative solver. The comparison factors derived from solving
the reordered matrices were nonzero entries on the main diagonal, the number of
iterations, the amount of fill-in in the preconditioners, and a preconditioner condi-
tioning estimate parameter. As a result, we can see that the convergence cost of the
preconditioned Krylov subspace methods on solving the reordered indefinite matrices

is markedly reduced by using our reordering strategies.

4.2 Hybrid Reordering Strategy

Let A be an indefinite matrix, and P = {(4,7) | i = j, 1 < 4,j < n} be the set of
pairs for a permutation, where n is the order of the matrix A, and (i,j) means to

interchange rows i and j of the matrix A.

Algorithm 4.2.1. VERIFY-PERMUTATION (A, i, k,d).

1. r < FALSE

2. k CouNT-NONZEROS (A, i, d)
3. ¢ < CHECK-PAIR(P,i,d)

4. If ((k = k) A (c = TRUE))

d. 1 < TRUE

6. Return r

We describe the VERIFY-PERMUTATION(A, i, k,d) function in Algorithm 4.2.1
to determine a permutation, where d is the direction (ROW or COL; i.e., row-wise or

column-wise),i-is-the index for the direction d, and k is the number of nonzero

45

www.manaraa.com

elements to be compared. In line 2, the COUNT-NONZERO(A, i,d) function counts
the number of nonzero elements in the i-th of the direction d (row or column). In
line 3, the CHECK-PAIR(P,i,d) function determines whether the pair (i,d) is used
for the permutation set P. At last, line 4 verifies whether the given position on the

matrix A can be a member of the set P.

Single-Element-Reordering

Algorithm 4.2.2. SINGLE-ELEMENT-REORDERING.

1. Fori=1,...n
If (VERIFY-PERMUTATION (A, i, 1, ROW) = TRUE)
j < Find the column index of the nonzero element in row 1.

Replace (i,1) with (i,7) in P

2

3

4

5. Fori=1,...n
6. If (VERIFY-PERMUTATION (A, i, 1, COL) = TRUE)

7 j < Find the row index of the nonzero element in column i.
8

Replace (3, 7) with (j,i) in P.

Algorithm 4.2.2 describes the SINGLE-ELEMENT-REORDERING algorithm that
finds rows and columns which have only one nonzero element for the permutation.
The main role of this algorithm is to increase the number of nonzero elements on the
diagonal. The number of elements in a row or in a column can be computed very
inexpensively if we use the compressed sparse row (or column) format. Since both
rows and columns are needed, the most efficient implementation needs the matrix
to be stored in both formats. We can temporarily use the storage space allocated
for the preconditioner to be used in a later phase to store an additional copy of
the matrix in another format. With the availability of both rows and columns, the

SINGLE-ELEMENT-REORDERING algorithm costs O(n) nonnumerical operations. It

46

www.manaraa.com

is computationally more efficient than the maximum transversal algorithm [10, 30, 31],

which is O(n * ¢), where ¢ is the number of nonzero entries of the matrix.

Maximum-Value-Reordering

Algorithm 4.2.3. MAXIMUM-VALUE-REORDERING.

1. a0

2. Fori=1,...,n

3 k « CouNT-NONZEROS (A, i, d)

4o If(a<k)a+k

5. Fork=2,... «

6 Fori=1,...,n

7 If (VERIFY-PERMUTATION (A, i, k, COL)=TRUE)

8. J < Find the row index of the mazximum value element in column 1.
9

Replace (3, 7) with (j,4) in P.

As described in Algorithm 4.2.3, the MAXIMUM-VALUE-REORDERING algorithm
searches for an element which has the maximum absolute value in each column for
a permutation to place that entry on the diagonal of each column of the matrix. In
lines 1-4, we find the maximum number « of nonzero elements in the columns. In line
8, the algorithm finds the maximum absolute value in the columns takes O(n) time.
Thus, it is obvious that the time complexity of MAXIMUM-VALUE-REORDERING is
O(n? x a) = O(n * q), where « is the maximum number of nonzero elements in a
column.

Duff and Koster [30, 31], and Benzi et al. [10] consider the maximum product
transversal which the product of the absolute value of the entries on the diagonal is
maximized with a complexity O(n * g * logn). Since the matrices under our consid-

eration are very sparse, « is smaller than logn and n < ¢q. The MAXIMUM-VALUE-

47

www.manharaa.com

REORDERING algorithm is also more efficient in terms of time complexity than the

maximum product transversal [10, 31].

Nondecreasing Degree Algorithm

We denote by deg(v;) the degree of the node (row) v;, which equals the number of
nonzero elements of the i-th row minus one, i.e., deg(v;) = Nz(A4;) — 1 = Nz(v;) — 1,
where Nz(A;) represents the number of nonzero elements in row i of a matrix A. To
be more precise, we reorder the nodes in a decreasing degree fashion; i.e., the nodes
with smaller degrees are listed first and those with larger degrees are listed last. The
purpose of the nondecreasing degree reordering strategy is to reduce the fill-in during

the ILU factorization [67].

4.3 Experimental Results

We present numerical experiments of the reordering strategies in this section. The
preconditioned iterative solver, GMRES(20), was employed with several ILU type
preconditioners, ILU(0), MILU(0), ILUT, and ILUTP. For all linear systems, the
right-hand side was generated by assuming that the solution is a vector of all ones.
The initial guess was a zero vector. The iteration was set to terminate when the
lo-norm of the initial residual was reduced by at least seven orders of magnitude, or

when the number of iterations reached 500.

Description of Test Matrices

The test sparse matrices for experiments were unsymmetric matrices from the Harwell-
Boeing sparse matrix test collection [29] and the sparse matrix collection at the Uni-
versity of Florida [24]. A short description of the matrices is given in Table 4.1.

In all tables with numerical results, SER, MVR, and SMR represent SINGLE-

ELEMENT-REORDERING, MAXIMUM-VALUE-REORDERING, and SER followed by

48

www.manaraa.com

Table 4.1: Description of the test matrices.

Name Description

MAHINDAS Economic model of Victoria, Australia, 1880 data

OLM1000 The OLMstead model represents the flow of a layer
of viscoelastic fluid

OLM5000 The OLMstead model represents the flow of a layer
of viscoelastic fluid

SHL_0 Simplex method basis matrix

SHIL_200 Simplex method basis matrix

SHIL._400 Simplex method basis matrix

FPGA_DCOP_03 Circuit simulation matrices

FPGA_DCOP_07 Circuit simulation matrices

FPGA_TRANS_01 | Circuit simulation matrices

FPGA_TRANS_02 | Circuit simulation matrices

INIT_.ADDER1 Circuit simulation matrices

SHERMANACa Matrices from Kai Shen, UCSB
SHERMANACd Matrices from Kai Shen, UCSB
ADDER_DCOP_15 | Circuit simulation matrices

MEG4 Primarily chemical process simulation matrices

MVR algorithm, respectively.

Comparisons of Reordering Strategies

The comparisons of nonzero entries on the diagonal and the number of GMRES
iterations with the reordering strategies are presented. For simplicity, n, nnz, org,
and nnzD(org) denote the dimension of the matrix, the number of nonzero entries
in the original matrix, the original matrix, and the number of nonzero entries on the
diagonal of the original matrix, respectively.

Table 4.2 reports that in most cases, the reordering strategies place more nonzero
entries on the diagonal than those of the original matrix. For example, the matrices
SHL_0, SHL_200, and SHL_400 have 5, 6, and 3 nonzero diagonal entries (nnzD) in
original matrices, and nnzD of the each matrix was increased 406, 360, and 353 with
SER, and 663, 645, and 641 nonzero with SMR, respectively. For the SHL_0 matrix,
all diagonal entries become nonzero with SMR. We note that nnzD of some matrices
are reduced with MVR and SMR, but such losses are seen as minor because the

number.of GMRES iterations are decreased compared to those of original matrix. In

49

www.manaraa.com

Table 4.2: Comparison of nonzero entries on diagonal.

Name n nnz | nmzD(org) | nmzD(SER) | nnzD(MVR) | nnzD(SMR)
MAHINDAS 1258 7682 106 519 907 1152
OLM1000 1000 3996 1000 1000 352 1000
OLM5000 5000 | 19996 5000 5000 366 5000
SHL_0 663 1687) 406 352 663
SHL_200 663 1726 6 360 366 645
SHL_400 663 1712 3 353 371 641
FPGA_TRANS_01 | 1220 7382 1154 1220 1158 1220
FPGA_TRANS_02 | 1220 7382 1154 1220 1158 1220
SHERMANACa 3432 | 25220 3432 3432 3408 3432
SHERMANACd 6136 | 53329 6136 6136 6110 6130
ADDER_DCOP_15 | 1813 | 11246 1801 1813 1786 1797
MEG4 5860 | 46842 5806 5860 5806 5860

the case of “SHERMANACd,” the number of nonzero diagonal entries of the matrix is
reduced from 6136 to 6130 with SMR reordering, but the failure of convergence result

of the matrix is changed to convergence with 83 GMRES iterations (See Table 4.3).

Table 4.3: Comparison of the number of iterations.

Name T p | precond org | ND | SER-ND | MVR-ND | SMR-ND
MAHINDAS 1073 [15 | ILUTP | 12(U) | 12 12 11 6
OLM1000 10-2 | 5| ILUT -1 -1 -1 -7 19
OLM5000 102 | 5| ILUT -1 -1 -1 -7 19
SHL_0 ILU(0) -7 -7 -7 -7 7
SHL_0 10*| 5| ILUT -3 -3 -1 -7 2
SHL_200 10-° | 10 | ILUT -3 -3 -3 -1 31
SHL_400 1073 | 10 | ILUT -3 -3 -3 -1 53
FPGA_TRANS_01 ILU(0) -7 -7 105 -7 105
FPGA_TRANS_02 ILU(0) -7 -7 105 -7 105
SHERMANACa 103 | 5| ILUT -3 -3 -3 -1 9
SHERMANACd 107¢ | 15 | ILUT -3 -3 -3 -1 83
ADDER_DCOP_15 ILU(0) -7 -7 299 -7 -7
MEG4 ILU(0) -7 -7 7 -7 7

In Table 4.3, we present comparison results of the number of preconditioned GM-
RES iterations with the reordering strategies. We have tested SER, and SMR fol-
lowed by a symmetric nondecreasing degree (ND) permutation, denoted “SER-ND”
and “SMR-ND,” respectively, to reduce fill-in in the preconditioner. The “7”7 and

[958}

p” columns in Table 4.3 are the two dropping parameters used in the ILUT fac-

50

www.manaraa.com

torization, and the “precond” column specifies the particular preconditioners. The
value “-1”7 and “-3” indicate the failure of convergence within the maximum number
(500) of allowed iterations and with the breakdown of the GMRES solver, respec-
tively, and “-7” indicates that the preconditioner was not constructed due to zeros
on the main diagonal (zero pivot). The symbol “U” denotes failure due to unstable
preconditioning result, which only happened with the original “MAHINDAS” matrix,
and the computed results are not reliable although the preconditioned solver stopped
at 12 iterations. Overall, SMR seems to be the most robust since it helped the ILU

preconditioners solve all but one matrix used in the experiments.

Table 4.4: Comparison of the number of nonzero entries.

Name precond org ND | SER-ND SMR | SMR-ND
MAHINDAS ILUTP 20234 9374 9087 | 25864 9520
OLM1000 ILUT 2000 2000 2000 1997 1997
OLM5000 ILUT 9997 9997 9997 9997 9997
SHL_0 ILUT 3946 3647 2857 1898 1409
SHL_200 ILUT 5839 5707 5399 2568 1970
SHL_400 ILUT 5885 5353 5120 2589 1967
FPGA_DCOP.03 | ILUT 9174 4837 4189 8483 4189
FPGA_DCOP.07 | ILUT 9339 4713 4106 8514 4106
INIT_ADDERI1 ILUTP 22679 8841 8833 | 27586 9110
SHERMANACa | ILUT 42094 | 43395 43395 | 29163 23277
SHERMANACd | ILUT 191446 | 165574 362596 | 231520 84770

As shown in Table 4.4, we compare the number of nonzero entries in the precon-
ditioners with SER and SMR followed by the ND algorithm with the same dropping
tolerance parameters as listed in Table 4.3. We can see that the nondecreasing degree
strategy reduces the number of fill-in entries during the ILUT and ILUTP factoriza-
tions. It is interesting to notice that for the most matrices including the SHL matrices
and the SHERMAN matrices, the SMR-ND strategy have the minimum or close to

the minimum amount of nonzero entries.

ol

www.manaraa.com

Computational Analysis

According to Greenbaum and Saad [39, 55|, the convergence behavior of the Krylov
subspace methods depends on the distribution of the eigenvalues and on the condition
number of the coefficient matrix. Based on these theoretical facts, we analyze the
reordering algorithms by presenting some numerical and graphical results.

For a given (diagonalizable) matrix A, it can be decomposed as A = XXX 1
where Y = diag{A1, Ag, - - - , A\, } is the diagonal matrix of the eigenvalues and X is the
matrix of the eigenvectors of the matrix A. The condition number of the eigenvector
matrix X measures the normality of the matrix A, and it can be used to explain the

convergence of the Krylov subspace methods heuristically [39, 55].

Table 4.5: The largest and smallest eigenvalues and condition numbers of the MAHIN-
DAS matrix.

Matrix)‘largest Asmallest COIld(X)

A -6.68E+00 | -2.90E-03 + 9.60E-03i | 1.08E+07

ILUT(A) 4.16E-01 + 2.47TE+03i N/A | 6.42E407
SMR-ND followed by ILUT 2.52E+06 1.95E-05 | 1.09E+406

Table 4.5 reports the largest and the smallest eigenvalues in magnitude of the
original and the preconditioned matrices, and the condition number of the eigenvector
matrices in the MAHINDAS matrix. Under “N/A”, we represent that the the smallest
eigenvalue was not computed. As shown in the table and Figure 4.2 (a), the condition
number of the eigenvector matrix of the original matrix is relatively large, and the
MAHINDAS matrix is highly indefinite.

The ILUT preconditioner makes the spectrum more spread around the origin and
indefinite than those of the original matrix in real part (See Figure 4.2 (b)). This
makes the preconditioned matrix have slightly larger condition number of the eigen-
vector matrix and causes a failed convergence of the GMRES method on the ILUT

preconditioned matrix. On the other hand, in Figure 4.2 (c), the eigenvalues ap-

52

www.manaraa.com

Imaginary Part
o

8 -6 -4 -2 0 2 4 6
Real Part

(a) Eigenvalues of the MAHINDAS matrix

2500

2000
1500+
1000+

500 -

of B e]

Imaginary Part

-500

-1000

-1500

—-2000

-2500 . > .
-100 -50 0 50 100
Real Part

(b) Eigenvalues of the MAHINDAS matrix with ILUT

x 10
2

15F

Imaginary Part
o
+

2
-05 [0.5 1 15 2 25 3
Real Part x 10°

(c) Eigenvalues of the MAHINDAS matrix with SMR-ND followed by ILUT

Figure 4.2: Plots of the eigenvalues of the MAHINDAS matrix. (These subfigures
are in different scale.)

plied by the SMR-ND reordering followed by the ILUT preconditioner are shifted to
the right-hand side of the origin in real part (positive definite). Also, the condition
number of the eigenvector matrix is decreased. These explain the good convergence

behavior of the GMRES method on this reordering followed by the ILUT precondi-

93

www.manharaa.com

tioned matrix.

Next, we use some statistical information to estimate condition numbers of the
preconditioned matrices. In order to estimate the condition number, a statistic “con-
dest”, suggested by Chow and Saad [19], is utilized by calculating ||(LU) 'e||, where
This statistics indicates a relation between the unstable

e is the vector of all ones.

triangular solutions and the poorly conditioned L and U factors.

Table 4.6: Comparison with condest.

Name precond org ND SER-ND SMR SMR-ND
MAHINDAS ILUTP Unstable | 4.30E+ 3 1.61E + 5 1.03E+6 | 5.54E+5
OLM1000 ILUT 1.15E + 2 1.12E + 2 1.15E + 2 1.88 1.98
OLM5000 ILUT 1.01E+3 1.01E+3 1.0E+3 1.79 1.81
SHL_0 ILU(0) N/A N/A N/A | 471E+3 | 451E+3
SHL_0 ILUT Infinity Infinity Unstable 5.44FE + 3 5.44FE + 3
SHL_200 ILUT Infinity 1.00 Unstable | 3.21F 4+ 13 | 9.73E + 10
SHL_400 ILUT Infinity Infinity Unstable | 3.65F + 11 | 7.19E + 14
FPGA_DCOP_03 ILUT 1.49FE 4+ 12 | 1.50E + 12 | 1.50F + 12 | 1.50F + 12 | 1.50F + 12
FPGA_DCOP_07 ILUT 1.50E 4+ 12 | 1.50E + 12 | 1.50F + 12 | 1.50F + 12 | 1.50F + 12
FPGA_TRANS_01 | ILU(0) N/A N/A 1.92E+1 | 4.89FE+2 1.92E +1
FPGA_TRANS_02 | ILU(0) N/A N/A 1.92E +1 5.28FE + 2 1.92E +1
INIT_ADDER1 ILUTP 7.62E 4+ 8 1.23E+8 1.23E+ 8 1.50E + 8 1.23E+ 8
SHERMANACa ILUT Unstable Infinity Infinity 207TE+4 | 207E+14
SHERMANACd ILUT 283E+3 | 28E+3| 283E+3 | 329E+19 | 467E+11
ADDER_DCOP_15 | ILU(0) N/A N/A | 5.00E + 11 N/A N/A
MEG4 ILU(0) N/A N/A 1.97E + 5 1.97E +5 1.97E + 5

The results are listed in Table 4.6, which are concerned with the results listed

in Table 4.3. Under “N/A”, we report that the preconditioner was not defined, due
to zeros on the diagonal (zero pivot). Also, “Infinity” and “Unstable” represent the
unstable triangular solvers. Here, we use “Unstable” if condest > 105, The statistics
of the “condest” shows that many matrices greatly benefit from the proposed SMR

algorithm in this paper.

o4

www.manaraa.com

4.4 Concluding Remarks

We have proposed hybrid reordering strategies for an indefinite matrix A in ILU
preconditioning techniques. The strategies are combinations of the diagonal reorder-
ings to construct stable preconditioner and nondecreasing degree reordering to reduce
fill-in numbers. The diagonal reorderings were used to make a matrix increase the
number of the nonzero elements on the diagonal and/or maximize the absolute value
on the diagonal entries. It is also worth mentioning that the strategies run efficiently
in low computational time cost. For the performance aspect, we showed various ex-
perimental results from the proposed reordering strategies. The results demonstrated
were quite promising and effective in helping construct ILU type preconditioners for
solving indefinite sparse matrices. In addition to that, the convergence cost of the

preconditioned Krylov subspace methods on solving the reordered indefinite matrices

was greatly decreased.

Copyright® Eun-Joo Lee, 2008.

%)

www.manharaa.com

Chapter 5 A Two-Phase Preconditioning Strategy

In this chapter, as a part of the continuous effort on solving indefinite matrices, a
two-phase preconditioning strategy based on a factored sparse approximate inverse is
proposed. This strategy adopted the idea of a shifting method, which adds a number
to the diagonals of an indefinite matrix, to make the resulting preconditioner well
conditioned. Moreover, the two-phase preconditioning process reinforces the tradeoff
between stability and accuracy of the resulting preconditioner obtained from the

shifting method.

5.1 Introduction

In recent years, a few preconditioning techniques in the form of sparse approximate
inverse have been developed [9, 16, 18, 20, 37, 38, 41|. Such techniques have some
advantages over the conventional ILU factorizations. Specifically, the process of ap-
plying the sparse approximate inverse preconditioning techniques can be performed
by the matrix-vector operations, in which the operations are relatively easier to paral-
lelize than the triangular solutions associated with the ILU factorizations. The sparse
inverse preconditioning techniques may succeed in solving certain problems where the
ILU factorizations are difficult to handle [20]. In addition to that, factored sparse
approximate inverse (FAPINV) in which a sparse approximate inverse has a factored
form, tends to perform better in convergence rate for the same amount of nonzeros
and also requires less computational cost than a non-factored form does. However, the
resulting approximate inverse could still break down for solving indefinite matrices
due to zero or small pivots [9, 69].

In solving indefinite matrices, small pivots are also often the origin of stability

problems in computing SAI preconditioners. Therefore, several researchers have fo-

o6

www.manaraa.com

cused on designing methods that replace the small pivots of indefinite matrices with
some large values. In [8, 51, 64], a shifting strategy that adds a value to the diagonals
of an indefinite matrix is proposed to make the resulting preconditioner better con-
ditioned. It has been noticed that determining the value to be added for small pivots
is usually critical to the performance of the resulting preconditioner [44]. In other
words, selecting a large replacing value may result in a factorization that is stable
but less accurate. On the other hand, selecting a small replacing value may result in
a factorization that is accurate but unstable. Such a tradeoff of the shifting strategy
has been well studied in [68].

We propose to adopt the idea of a shifting strategy [51] to replace small or zero el-
ements on the main diagonal of the original matrix, and to reinforce with a two-phase
preconditioning process to deal with the tradeoff between stability and accuracy of
the resulting preconditioner. More specifically, the first phase of the process employs
the shifting strategy to the original matrix so that a shifted matrix can be well con-
ditioned, and then an approximate inverse, My, of the shifted matrix is obtained by
utilizing FAPINV. In the second phase of the process, a temporary matrix which is a
product of M; and the shifted matrix, is considered to acquire a better approximate
inverse of the original matrix than M;. Applying the shifting strategy again to the
temporary matrix produces a second shifted matrix, and FAPINV computes a second
inverse approximation, M, of the second shifted matrix. The resulting sparse ap-
proximate inverse, M, has the form of M = M,M;, where M; and M, are computed
in each phase, respectively.

This chapter is organized as follows. In Section 5.2, a function for determining
the shifting parameter «, and a two-phase preconditioning of shifted matrices for
computing sparse approximate inverses are proposed. In Section 5.3, numerical re-
sults are presented to demonstrate advantages and preconditioning performance of

the proposed preconditioner over the standard FAPINV preconditioner. Concluding

o7

www.manaraa.com

remarks are in Section 5.4.

5.2 Stabilized FAPINV (SFAPINV) Preconditioner

We now introduce the stabilized factored approximate inverse (SFAPINV) algorithm
for solving indefinite matrices. The SFAPINV preconditioner is computed in a two-
phase preconditioning of two shifted matrices. Each phase generates an approxima-
tion of the inverse of a shifted matrix. These two approximations have factored forms
of Mi = LiDiU; = A; ! and My = LyDyUs &~ A5 Y, where L; is a lower triangu-
lar matrix, D; is a diagonal matrix, and U; is an upper triangular matrix, i = 1, 2.

Finally, the resulting preconditioner becomes a form of M = (LyDyUs) (L1 D1Uy).

Determining the Shifting Parameter

Indefinite matrices usually have many small or zero pivots that can be the reason of
breakdown in constructing sparse approximate inverse as well as ILU-type precon-
ditioners. In order to prevent the resulting sparse approximate inverse from being
unstable, we employ a shifting strategy which factors a shifted matrix A’ = A + al,
where « is a scalar so that A+ «I is well conditioned (e.g., diagonally dominant). As
was mentioned in the introduction, the choice of « is significant for good performance
for such strategies. For example, if a matrix A is ill-conditioned, the inverse of A+l
could be quite different from A~! for a large value of « [11, 9, 69]. Indeed, should be
large enough to ensure the existence of the sparse approximate inverse factorization,
but also small enough so that A + al is close to A.

We present an efficient algorithm FIND-ALPHA (A, o) in Algorithm 5.2.1, to deter-
mine a proper value for the shifting parameter «, rather than a brute-force approach

which is computationally prohibitive.

Algorithm 5.2.1. FIND-ALPHA (A, «).

o8

www.manaraa.com

~
S
ﬁ
o~
I
=
S

2. c(i) =0

3. a=0

4. Fori=1n

J. temp = 0

6. For j=1n

7 If (7 #1i), then c(i) = c(i) + |ai;]
8. else temp = |a|

9. If (c(i) < temp), then c(i) = temp

10.Fori=1,n
11. If (e < (7)), then a = c(i)

12. Return «

Note that n refers to the order of the original matrix A, a;; denotes a nonzero
element in row ¢ and column 7, and ¢(7) represents an accumulator of the off-diagonals
in row 4, where 7,7 = 1,--- ,n. The function starts with initializing ¢(i) for all rows
and the shifting parameter «. In lines 5-12, ¢(i) is determined by selecting a larger
value between the summation of the absolute value of the off-diagonals in row 7 and
the diagonal of row 7. In lines 13 16, the shifting value « is decided by choosing the
largest value among c(i)s. At the end, the function returns the largest accumulator

as the computed shifting parameter that will make all rows diagonally dominant.

Two-Phase FAPINV Preconditioner (SFAPINV)

Given a sparse approximate inverse M; computed by using FAPINV to the original

matrix A, we assume that M, is inefficient to solve the preconditioned linear system

99

www.manharaa.com

Another sparse approximate inverse M, for the preconditioned linear system (5.1)
could be considered to acquire a closer inverse of A than M;. A product of the two
preconditioners, M, M, is utilized as a sparse approximate inverse of A, and M,y M,
becomes more accurate to the inverse of A than M; does. In fact, the product matrix
MsM; may hold more information than a single matrix M can. If M;M; is not
successful to solve the preconditioned system, another approximate inverses may be
considered, and this procedure can be continued for a few times to obtain a good
preconditioner (See [63] for details).

In the case that the original matrix is indefinite, a combined preconditioner My My,
computed directly from A, however, may be unstable because of small or zero pivots.
Furthermore, the shifting strategy makes the original matrix diagonally dominant,
but the inverse of A + a could be quite different from A~! if A is ill-conditioned
(11,9, 69]. Thus, we combine the two-phase preconditioning with the shifting strategy,
called STABILIZED FAPINV PRECONDITIONER (SFAPINV) in Algorithm 5.2.2; to
improve the accuracy and stability of the sparse approximate inverse factorization.

Here, FAPINV [69] is applied as a local preconditioner in each phase.

Algorithm 5.2.2. STABILIZED FAPINV PRECONDITIONER

1. Call FIND-ALPHA (A, a;)

2. Construct a shifted matric Ay = A+ a1l
3. Call FAPINV (Ay, 11, M;)

4. Compute a temporary matric W = M, A
5. Drop small entries of W with respect to T
6. Call FIND-ALPHA (W, ay)

7. Construct a shifted matriz Ay = W + asl
8. Call FAPINV (Ay, 15, M3)

9. Return M,M,;

60

www.manaraa.com

Note that 71, 79, and 7 represent different dropping tolerances. The algorithm first
determines the shifting parameter a; from the FIND-ALPHA function, and constructs
a shifted matrix A; which becomes diagonally dominant. In line 3, FAPINV (A, 71, M;)
applies the FAPINV preconditioner to the matrix A; with the dropping tolerance 1,
and returns an approximate matrix M; which has a factored form of My = L;D,U; of
the inverse of A;. Then with the factored approximate inverse M, the preconditioned

system (5.1) can be written as
(LlDlUl)A.’I) — (LlDlUl)b (52)

The preconditioned system (5.2), however, may need many iterations to converge
because the factorization L, D;U; could be inaccurate if the shifting parameter «; is
too large. For this potential problem in inaccuracy, in line 4, a temporary matrix
W = M, A is considered to further precondition the system (5.2). In line 5, a dropping
threshold parameter, 7, is applied to control the sparsity rate of W, where W is usually
denser than A except the diagonal entries. By doing this, the diagonal entries of the
matrix W are not dropped regardless of their magnitude. In lines 6-8, the shifting
strategy is re-employed to obtain a more accurate and stabilized preconditioner, and
the second FAPINV(A,, 75, Ms) factorization computes an approximation M, which
has a factored form My; = LyDsU, of the inverse of As. In line 9, the algorithm
returns a combined approximation, M, My, of the inverse of A. As a result, the final

preconditioned system becomes
(LaDoUs)(Ly D Uy) Az = (L DyUs) (Ly D1Uy). (5.3)
Now, we point out some important features behind our strategy.

e It has been well studied that for a given matrix, finding a suitable shifting pa-
rameter of the existing shifting strategies may be complicated [64]. More specif-

ically, too small a diagonal shift will not have the desired effect of stabilization,

61

www.manaraa.com

but too large a diagonal shift will result in an inaccurate preconditioner. In this
regard, the FIND- ALPHA (A,) function provides an explicit and efficient way in
determining the shifting parameters compared to a commonly used brute-force

approach.

It is easy to see that the resulting preconditioner M;M; is nonsingular. This
claim can be justified by the following two facts. The first is that M; and
M, are produced by the FAPINV preconditioner in a factored form which is
nonsingular as long as each factor is nonsingular. The second is that the two
factored sparse approximate inverses are not singular [69]. The singularity of

each factor can be guaranteed by making sure that its diagonal is not zero.

In general, the second shifting parameter oy requires to be much smaller than
the first parameter «;. It can be observed that a matrix which has more zeros
on its diagonal needs a larger shifting parameter to stabilize the original matrix.
In fact, W = M; A tends to be closer to I, or more diagonally dominant than
A; does. Here, we propose two possible settings in choosing the two shifting
parameters o and ap. For the case that a matrix is ill-conditioned and has a low
percentage of zeros on its diagonal, the setting with a; = FIND-ALPHA(A, o)
and ap = FIND-ALPHA(W, ap) can be a proper choice. On the other hand, if a
matrix has a large number of zeros on the diagonal of the matrix, the setting

with a; = FIND-ALPHA(A, 1) and oy = 0 is recommended.

The resulting preconditioner MyM; = (LyDyUsy) (L1 D1Up) can be not only sta-
ble but also accurate on solving some highly indefinite matrices. This claim will
be supported by experiments with the two-phase preconditioning constructed
from the two shifted matrices. In short, the shifting method first enhances
the stability of the factorization [51], and then the two-phase preconditioning

improves the accuracy of the preconditioner.

62

www.manaraa.com

5.3 Numerical Experiments

We present numerical experiments of the SFAPINV (for stabilized factored approx-
imate inverse) preconditioner on solving indefinite and unsymmetric matrices. The

L were solved

description of the test matrices is given in Table 5.1. The test matrices
as they were, that is, no scalings or permutations were applied. The SFAPINV pre-
conditioner was used as a right preconditioner for experiments, but it can be used as
a left preconditioner as well since there was not much difference in preconditioning
effect. The preconditioned iterative solver employed was GMRES(50). For all linear
systems, the right-hand side was generated by assuming that the solution is a vector
of all ones. The initial guess was a zero vector. The iteration was terminated when
the ly-norm of the initial residual was reduced by at least eight orders of magnitude,
or when the number of iterations reached 500. The programs of our approach were
coded in standard Fortran 77 programming language in double precision with 64-bit

arithmetic. The computations were carried out on a Sun-Blade-100 workstation with

a 500 MHz UltraSPARC III CPU and 1 GB of RAM.

bR A4 M«

In all tables with numerical results, “iter,” “comp,” “solu,” “cond,” “aq,

”

and
“ap” denote the number of GMRES iterations, the CPU time in seconds for com-
puting the preconditioner, the CPU time for the solution phase (both GMRES and
preconditioner), the condest?, the first and second shifting parameters, respectively.
“m,) “my, and “7 = 1 % 79" are the dropping tolerances. The value “-17 and “-

3”7 indicate the failure of convergence within the maximum number of the allowed

iterations (500) and with the GMRES solver breakdown, respectively.

P All of these matrices are available online from the Matrix Market of the National Institute of
Standards and Technology at http://math.mist.gov/matrixMarket.

2A statistic, condest, is introduced by Chow and Saad [19] to measure the stability of triangular
solutions.

63

www.manaraa.com

Matrix Description n nnz nnzdiag | condition
FIDAPO07 | Matrices generated by the FIDAP Package | 1633 | 46570 1633 | 1.93E+11
FIDAPO14 | Matrices generated by the FIDAP Package | 3251 65747 2351 | 2.62E+16
FIDAPO033 | Matrices generated by the FIDAP Package | 1733 | 20315 1733 | 1.20E+13
GRE_512 Simulation of computer systems 512 1976 296 3.8E+02
IMPCOL_B | Chemical engineering plant models 59 271 17 | 2.7E+05

Cavett’s process
NNC1374 Nuclear reactor models 1374 8588 870 1.0E+402
NNC261 Nuclear reactor models 261 1500 150 1.2E+415
NNC666 Nuclear reactor models 666 4044 410 1.8E+11
PSMIGR_2 | Inter-county migration US Inter-county 3140 | 540022 0 1.0E4+02
migration 1965-1970
RBS480_A Forward Kinematics for the Stewart 480 17088 42 1.3E405
platform of Robotics
RBS480_B Forward Kinematics for the Stewart 480 17088 43 1.6E+4+05
platform of Robotics
RW136 Markov Chain Transition Matrix 136 479 0 1.4E+405
WESTO0067 | Chemical engineering plant models 67 294 2 3.0E+02

Table 5.1: Description of the test matrices ; n, nnz, nnzdiag, and condition denotes
the order, the number of nonzero entries, the number of nonzero entries on the main
diagonal, and the condition number of a matrix, respectively.

Matrix n nnzdiag | condition | DD — row a1 Qs
FIDAPO0O7 | 1633 1633 | 1.93E+11 0.0245 || Yes | Yes
FIDAPO14 | 3251 2351 | 2.62E+16 0.2125 || Yes | Yes
FIDAPO033 1733 1733 | 1.20E+13 0.0848 || Yes | Yes
GRE_512 512 296 | 3.8E+02 0.1328 || Yes | No
IMPCOL_B 59 17 | 2.7TE+05 0.1694 || Yes | No
NNC1374 1374 870 | 1.0E+02 0. || Yes | No
NNC261 261 150 | 1.2E+415 0. || Yes | No
NNC666 666 410 | 1.8E+11 0. || Yes | No
PSMIGR_2 | 3140 0| 1.0E+02 0. || Yes | No
RBS480_A 480 42 1.3E+05 0. || Yes | No
RBS480_B 480 43 1.6E+05 0. || Yes | No
RW136 136 0| 1.4E+05 0. || Yes | No

Table 5.2: The relationship between the matrix properties and the shifting factors.

Shifting Parameters and Dropping Tolerances

We present results arisen from different settings of the shifting parameters and the
dropping tolerances. In order to obtain a concrete convergence rate, two different

settings of the shifting parameters are used in constructing the preconditioner. Note

64

www.manaraa.com

that the first and the second settings are denoted as a; = FIND-ALPHA(A, ;) and
s = FIND-ALPHA(W, a2), and «; = FIND-ALPHA(A, ay) and as = 0, respectively.

We recommend that a; and ay be chosen to improve the stability of the precon-
ditioner, but for some matrices, as be set to zero to enhance the accuracy. Table 5.2
informs a guideline on choosing the proper setting of the shifting parameters for each
matrix to achieve good convergence. Determining the shifting parameters is related
with the statistics of each matrix, such as the condition number, diagonally dominant
row rate (DD-row), and the number of nonzeros on diagonal. Specifically, when DD-
row of a matrix is zero, the second setting to the parameters (az = 0) could be chosen
due to the need for increased accuracy in the second phase of the preconditioning.
As we can see in Table 5.2, for the matrices which have small condition numbers
and a large number of zeros on their diagonals, we select the second setting to the
parameters (az = 0). On the contrary, when DD-row of a matrix is not zero, the two
parameters with the first setting (ap # 0) are usually selected to improve stability
in the second phase of the preconditioning. In this case, the matrices usually have
large condition numbers. For example, The FIDAP matrices, FIDAP007, FIDAP014,
and FIDAPO033, with the first setting have large condition numbers in the range of
[1.93E+11, 2.62E+16] and low DD-rate of [0.0245, 0.2125].

The choice of the first setting is usually acceptable for the FIDAP matrices. Ta-
bles 5.3 and 5.4 show that the FIDAP matrices with the first setting increases the
accuracy of the preconditioning, and as a result of that the number of GMRES it-
erations is decreased noticeably. The FIDAP014 matrix converges in around 167
iterations with the first setting (See cases 1 and 4 in Figure 5.1), but with the second,
it converges in 436 (460) iterations (See cases 2 and 3 in Figure 5.1). In addition,
the preconditioner for solving the FIDAP(033 matrix cannot converge in 500 itera-
tions with the second setting while it converges with the first setting. In the second

setting, the number of GMRES iterations may be related with the second dropping

65

www.manaraa.com

Shifting factors Dropping tolerances Convergence results

aq Qs 1 Ty T comp solu | iter cond
1.14E+07 | 5.00E-01 | 1.0E-01 | 1.0E-02 | 1.0E-03 || 2.30E+00 | 2.28E+00 | 167 | 1.76E-07
1.14E+07 | 5.00E-01 | 1.0E-01 | 1.0E-03 | 1.0E-04 || 2.44E+00 | 2.53E+00 | 167 | 1.76E-07
1.14E+07 | 5.00E-01 | 1.0E-01 | 1.0E-04 | 1.0E-05 || 2.50E+00 | 2.81E+00 | 167 | 1.76E-07
1.14E+07 | 5.00E-01 | 1.0E-02 | 1.0E-01 | 1.0E-03 || 2.32E+00 | 2.32E+00 | 180 | 1.76E-07
1.14E+07 | 4.95E-01 | 1.0E-02 | 1.0E-02 | 1.0E-04 || 3.20E+00 | 2.34E+00 | 163 | 1.78E-07
1.14E+07 | 4.95E-01 | 1.0E-02 | 1.0E-03 | 1.0E-05 || 3.40E+00 | 2.55E+00 | 163 | 1.78E-07
1.14E+07 | 4.95E-01 | 1.0E-03 | 1.0E-01 | 1.0E-04 || 6.10E+00 | 2.47E+00 | 169 | 1.78E-07
1.14E+07 | 4.95E-01 | 1.0E-03 | 1.0E-02 | 1.0E-05 || 6.10E+00 | 2.50E+00 | 162 | 1.78E-07
1.14E+07 | 4.95E-01 | 1.0E-04 | 1.0E-01 | 1.0E-05 || 1.07E+01 | 2.72E+00 | 169 | 1.78E-07
1.14E+07 0 | 1.0E-03 | 1.0E-01 | 1.0E-04 || 6.17TE4+00 | 7.31E400 | 460 | 8.80E+400
1.14E+407 0 | 1.0E-01 | 1.0E-03 | 1.0E-04 || 2.75E4+00 | 9.09E+00 | 436 | 8.80E+00

Table 5.3: Test results for solving the FIDAP014 matrix with different values of the
shifting factors and the dropping parameters.

Shifting factors

Dropping tolerances

Convergence results

ag Q2 El Ty T comp solu | iter cond
1.21E+11 6.07E-01 | 1.0E-01 | 1.0E-02 | 1.0E-03 6.69E-01 | 1.55E+00 | 289 | 1.37E-11
1.21E+11 6.09E-01 | 1.0E-01 | 1.0E-03 | 1.0E-04 7.00E-01 | 1.87E4+00 | 300 | 1.37E-11
1.21E+11 6.10E-01 | 1.0E-01 | 1.0E-04 | 1.0E-05 7.09E-01 | 1.96E+00 | 300 | 1.37E-11
1.21E+11 | 0.75E+00 | 1.0E-02 | 1.0E-01 | 1.0E-03 6.59E-01 | 1.67E+00 | 320 | 1.09E-11
1.21E+11 5.93E-01 | 1.0E-02 | 1.0E-03 | 1.0E-05 6.69E-01 | 1.60E+00 | 296 | 1.49E-11
1.21E+11 5.94E-01 | 1.0E-02 | 1.0E-03 | 1.0E-05 || 7.20E400 | 1.89E+00 | 300 | 1.49E-11
1.21E+11 591E-01 | 1.0E-03 | 1.0E-01 | 1.0E-04 || 1.57E+00 | 1.78E+00 | 288 | 1.39E-11
1.21E+11 5.92E-01 | 1.0E-03 | 1.0E-02 | 1.0E-05 || 1.56E+400 | 1.89E+400 | 297 | 1.50E-11
1.21E+11 5.92E-01 | 1.0E-04 | 1.0E-01 | 1.0E-05 || 1.65E4+00 | 1.79E+00 | 288 | 1.39E-11

Table 5.4: Test results of SFAPINV for solving the FIDAP033 matrix with different
values of the shifting factors and the dropping parameters.

Shifting factors Dropping tolerances Convergence results

a1 Qs 1 Ty T comp solu | iter cond
1.00E+00 0| 1.0E-03 | 1.0E-02 | 1.0E-05 || 1.17E+01 | 3.69E-01 12 | 2.44E+400
1.00E+00 0| 1.0E-02 | 1.0E-02 | 1.0E-04 || 8.17TE400 | 3.29E-01 13 | 1.79E+4-00
1.00E+00 0 | 1.95E-03 | 1.0E-02 | 5.35E-03 || 1.056E+01 | 4.40E-01 15 | 4.19E400
1.00E+00 0| 1.0E-02 | 1.0E-01 | 1.0E-03 || 9.69E+400 | 7.09E+400 | 289 | 1.03E+402
1.00E+00 0| 1.0E-02 | 1.0E-03 | 1.0E-05 || 8.08E£+00 | 3.00E-01 12 | 1.52E400
1.00E+00 0| 1.0E-04 | 1.0E-01 | 1.0E-05 || 1.31E401 | 1.0TE+401 | 353 | 3.09E+402

Table 5.5: Test results of SFAPINV for solving the GRE_512 matrix with different
values of the dropping parameters.

66

www.manaraa.com

SPARSKIT fidapfidap0 14

.)
i | | AR | | | ~

T esh 0 N oW B W B W B M & N
305143051 66647 entries 63747 nonzera ' Number o terafons

(a) The FIDAP 014 matrix [50] (b) The convergence curves of the FIDAP 014 matrix

Figure 5.1: The FIDAP 014 matrix [50] and the convergence curves with different
values of the shifting factors and the dropping parameters.

tolerance. For example, Table 5.5 indicates that the GRE_512 matrix (See Figure 5.2)
converges only with the second setting (az = 0). The number of iterations vary from

12 to 353 when the dropping tolerances are in the range of [1.0E-05, 1.0E-01]. More

Harwell-Boeing/grenchle/qre_512

li ‘
oy
~
J D Gl
R —]
. S O3
' TN -
g L\
Eul R
c A} -
g o't "1 "
[\ [
- \
" \
‘. 1
S A -
0r e ~.
\
10*‘ I I I I I I I
0 0 5 10 150 0 50 30 30 40
5124512 2192 enfries 1978 nonzero Number of eratons
(a) GRE_512 matrix [50] (b) The convergence curves of GRE_512

Figure 5.2: The GRE_512 matrix [50] and the convergence curves with different values
of the dropping parameters.

= 0.1, the number of iterations are 289 and 353 (See cases 3 and

67

www.manharaa.com

4 in Figure 5.1) while when 75 # 0.1, the iterations are from 12 to 15 (See cases 1 and
2 in Figure 5.1). We found that for the matrix GRE_512, the number of iterations

become large when the second dropping tolerance sets at 0.1.

Comparison between SFAPINV and FAPINV

The comparisons of the SFAPINV (for stabilized factored approximate inverse) pre-
conditioner with the FAPINV (for factored approximate inverse) [69] preconditioner
are presented in Table 5.6. Under “N/A”, we report that the preconditioner was not
constructed, due to zeros on the diagonal (zero pivot). In each testing, the dropping
tolerances were carefully chosen to keep the memory cost (sparsity ratio) of these two
preconditioners comparable. Table 5.7 is a list of the parameters used in both the

SFAPINV and FAPINV preconditioners for the test matrices.

SFAPINV FAPINV

Matrix comp solu | iter cond comp solu | iter cond
FIDAPO007 | 2.56E+400 | 1.56E+00 | 153 8.96E-10 || 1.79E401 | 6.78E401 -1 | 3.71E+03
FIDAPO14 | 6.10E400 | 2.50E400 | 162 1.78E-07 || 9.64E+01 | 3.30E+02 -1 | 7.17E+09
FIDAPO033 | 1.57TE400 | 1.78E+00 | 288 1.39E-11 || 8.09E4-00 | 4.59E+01 -1 | 6.83E+01
GRE_512 1.17E4+01 | 3.69E-01 12 | 2.44E+00 N/A N/A -3 N/A
IMPCOL_B | 9.99E-03 | 9.99E-03 | 27 | 7.57E+03 N/A N/A -3 N/A
PSMIGR.2 | 1.92E403 | 1.69E+01 19 | 1.49E+03 N/A N/A -3 N/A
NNC1372 3.61E4+00 | 2.63E4+00 | 46 | 9.57TE+04 || 3.71E+400 | 3.02E+01 -1 | 6.59E+35
NNC261 7.00E-02 | 8.99E-02 | 44 | 5.99E+404 5.00E-02 | 1.05E+00 -1 | 2.93E+22
NNC666 5.60E-01 | 2.99E-01 | 20 | 1.06.E+05 4.39E-01 | 6.62E+00 -1 | 1.23E+12
RBS480_A 5.41E+00 | 4.20E-01 | 22| 2.93E401 N/A N/A -3 N/A
RBS480_B 5.40E+00 | 3.19E-01 16 | 1.34E+00 || 4.26E+00 | 8.09E+00 -1 | 1.22E+03
RW136 1.60E-02 | 7.99E-03 | 20 | 2.24E+10 3.99E-03 | 1.24E-01 -1 | 2.69E+15
WESTO0067 2.99E-02 | 0.00E4+00 5| 1.14E+01 N/A N/A -3 N/A

Table 5.6: Comparisons of SFAPINV and FAPINV.

As shown in Table 5.6, in most cases, the SFAPINV preconditioner performed
better than the FAPINV preconditioner. The test matrices that were not solved by
the FAPINV preconditioner may be difficult to solve by the ILU preconditioners, such
as ILU(0), ILUT [54]. The data in the table also demonstrates that the construction

cost-of the preconditioners is quite inexpensive. For the case of the FIDAP014 matri-

68

www.manaraa.com

SFAPINV FAPINV

Shifting factors Dropping tolerances Dropping tolerance

Matrix aq Qs 1 Ty T T
FIDAPO07 | 2.00E4+09 | 5.64E-01 1.0E-03 | 1.0E-02 1.0E-05 1.0E-03
FIDAPO14 | 1.14E407 | 4.95E-01 1.0E-03 | 1.0E-02 1.0E-05 1.0E-03
FIDAP033 | 1.21E+11 | 5.91E-01 1.0E-03 | 1.0E-01 1.0E-04 1.0E-03
GRE_512 1.00E4-00 0 1.0E-03 | 1.0E-02 1.0E-05 1.0E-03
IMPCOL_B | 1.27E+01 0 1.0E-04 | 1.0E-01 1.0E-05 1.0E-04
NNC1374 3.56E403 0 1.0E-01 | 1.0E-04 1.0E-05 1.0E-01
NNC261 3.56E+03 0 1.0E-01 | 1.0E-04 1.0E-05 1.0E-01
NNC666 3.56E403 0 1.0E-01 | 1.0E-04 1.0E-05 1.0E-01
PSMIGR_2 | 1.00E+400 0 | 3.18E-04 | 1.0E-02 | 2.79E-05 3.18E-04
RBS480_A 5.79E403 0 1.0E-03 | 1.0E-02 1.0E-05 1.0E-03
RBS480_B 6.16E4+03 0 1.0E-03 | 1.0E-02 1.0E-05 1.0E-03
RW136 1.567E400 0 1.0E-03 | 1.0E-02 1.0E-05 1.0E-03
WESTO0067 | 6.14E400 0 1.0E-03 | 1.0E-02 1.0E-05 1.0E-03

Table 5.7: Parameters used in SFAPINV and FAPINV.

ces, the construction cost of the SFAPINV preconditioner was 16 times cheaper than
that of the FAPINV preconditioner. In each phase, an sparse matrix (approximation)
could be computed with low memory cost. As a result, the total computational cost
of these sparse matrices becomes cheaper compared with computing a single sparse
matrix with a denser sparsity pattern.

We note that the SFAPINV preconditioner does not converge if the first shifting
parameter «; is set to zero (result is not shown in this paper). Thus, a nonzero value
for the first shifting parameter is necessary for the two-phase preconditioning of the

shifting method to achieve good performance.

Computational Analysis

Again, in order to analyze the convergence behavior of the Krylov subspace meth-
ods, we measure the distribution of the eigenvalues and the condition number of the
eigenvector matrix and the coefficient matrix [39, 55].

As we can see in Table 5.8 and Figure 5.3 (a), the condition number of the original
matrix A (FIDAP014) is relatively large, and the eigenvalues of the original matrix

are-distributed near.the origin and far away from zero. The FAPINV preconditioned

69

www.manaraa.com

Table 5.8: The largest and smallest eigenvalues and conditioning information of the
FIDAP014 matrix.

Matrix Nargest Asmallest cond(Matrix) | cond(X)

A 1.27E407 -8.55E-10 2.16E+16 | 1.00E400
FAPINV(A) | 1.02E+46 | -6.37E-12 + 1.87E-11i 1.96E4+57 | 1.36E+21
SFAPINV(A) 0.5261 -1.52E-16 3.468E+15 | 5.81E+03

matrix (FAPINV(A)) made the spectrum more spread (See Figure 5.3 (b)), and
the condition number of the eigenvector matrix and preconditioned matrix became
larger than the original matrix. As a result, on the original matrix and the FAPINV
preconditioned matrix, the convergences of the GMRES method are failed.

It has been known that eigenvalues tightly clustered around a single point (away
from the origin) provide fast convergence, while widely spread eigenvalues, especially
around the origin, cause the convergence to be very slow [39, 55].

Unlike the FAPINV preconditioned matrix, the eigenvalues of the SFAPINV pre-
conditioned matrix (SFAPINV(A)) became more clustered as clearly shown in Fig-
ure 5.3 (¢). In addition, the largest and the smallest eigenvalue in magnitude of the
SFAPINV(A) are 0.5261 and -1.52E-16, and the condition numbers of the eigenvector
matrix of SFAPINV(A) is decreased. These improvements support a good conver-

gence behavior of the GMRES method on the SFAPINV preconditioned matrix.

5.4 Concluding Remarks

We proposed an algorithm called SFAPINV (for stabilized factored approximate in-
verse) for solving highly indefinite matrices. SFAPINV consists of two preconditioning
phases to two shifted matrices. Each phase is a factorization of a shifted matrix of
the form A + al. The shifting method is employed to prevent unstable factorization
due to the small or zero pivots of the original matrix, and the two-phase precondi-
tioning is utilized to improve the accuracy of the preconditioner. FAPINV [69] has

been utilized as a local preconditioner in the SFAPINV preconditioning because of

70

www.manaraa.com

Imaginary Part
R o
T T T
I
I
I

2 0 2 4 6 8 10 12 14
Real Part x 10°

(a) Eigenvalues of the FIDAP014 matrix

x 10
3

Imaginary Part
o

I I
-2 0 2 4 6 8 10 12
Real Part x10%°

(b) Eigenvalues of the FIDAP matrix with FAPINV

x10°
15

1t

05

Imaginary Part
o
i
|

b

_15
-0.1 [0.1 0.2 0.3 0.4 0.5 0.6
Real Part

(c) Eigenvalues of the FIDAP014 matrix with SFAPINV

Figure 5.3: Plots of the eigenvalues of the FIDAP014 matrix. (These subfigures are
in different scale.)

its low construction cost and robustness.
Numerical experiments demonstrate the stability and accuracy of the SFAPINV
preconditioner. Moreover, for the NNC1372 and FIDAP matrices, the construction

cost of the SFAPINV preconditioner may be cheaper than that of a single sparse

71

www.manharaa.com

matrix in the FAPINV preconditioner although the SFAPINV preconditioner is com-
posed of two sparse matrices, M; and M,. In fact, the memory cost of each sparse
matrix is small and each of the sparse approximate inverse matrices could be com-
puted cheaply. According to [63], computing a series of two matrices where each
matrix needs small memory cost may be cheaper than that of a matrix that needs
high memory cost. Thus, the SFAPINV preconditioner could be robust and fast on
solving indefinite matrices.

We remark that the concept of the two-phase preconditioning of shifted matrices
may be applied to other preconditioning techniques. For example, one can construct
a hybrid two-phase preconditioning by using a different preconditioner in each phase.
Also, the presented algorithm can be extended to a parallel version because FAPINV

naturally possesses of great inherent parallelism.

Copyright® Eun-Joo Lee, 2008.

72

www.manharaa.com

Chapter 6 Factored Approximate Inverse Preconditioners with Dynamic

Sparsity Patterns

The search for an optimal sparsity pattern in constructing sparse approximate inverse
(SAI) preconditioners should be taken with extreme care because the performance of
SAT preconditioners depends on the sparsity pattern [69]. In this chapter, we present
two dynamic sparsity pattern selection algorithms for FAPINV (factored approximate
inverse) preconditioners in solving general sparse matrices. The sparsity pattern is
adaptively updated in the construction phase by using combined information of the

inverse and original triangular factors of the original matrix.

6.1 Introduction

The computational efficiency and potential parallelism of sparse approximate inverse
(SAT) leads us to choose SAI preconditioners as an alternative to the conventional
ILU preconditioners. It has been well known that the performance of SAI precon-
ditioners depends on their sparsity patterns [63, 69]. Thus, obtaining an optimal
sparsity pattern in constructing an SAI preconditioner can be the most important
part. Generally speaking, there exist two main classes of methods called static and
dynamic strategies in determining the sparsity pattern of SAI. A static sparsity pat-
tern strategy prescribes the sparsity pattern before constructing a preconditioner,
and the pattern remains unchanged until finishing the construction. The use of a
prescribed (fixed) pattern through the construction process assumes that this class of
sparsity pattern selection strategy is usually efficient in terms of computational cost.
But, for general sparse matrices, the prescribed sparsity pattern is often inadequate
for robustness of SAI [69]. On the contrary, a dynamic sparsity pattern strategy ad-

justs the pattern using some rules in the construction phase. Such a strategy usually

73

www.manaraa.com

computes more accurate and robust preconditioners than a static strategy [63]. Thus,
a dynamic sparsity pattern strategy may be used to substitute for a static sparsity
pattern strategy in solving difficult matrices.

In recent years, a few dynamic pattern strategies [15, 41] for SAT preconditioners
have been developed. For example, Bollhdfer [14] showed that the norms of the inverse
triangular factors have direct influence on the dropping strategy in computing a new
ILU decomposition. Based on this insight, Bollhdfer [15] proposed an algorithm that
manages the process of dropped entries with small absolute values by using the row
norm of any row of the inverse factors, but the algorithm has a limitation on solving
some ill-conditioned problems.

As a part of our continuous efforts in determining dynamic sparsity pattern, we
introduce two enhanced algorithms, which extend the algorithm [15] mentioned above,
using combined information of the norm of the inverse factors and either the largest
absolute value of the original factors or the norm of the original factors. Here, a
factored approximate inverse (FAPINV) [69], which is a sparse approximate inverse
with a factored form, is utilized as an SAIL

The remainder of this chapter is organized as follows. Section 6.2 describes the
FAPINV algorithm used to characterize and justify our algorithms for dynamic spar-
sity pattern in Section 6.3. In Section 6.4, numerical results are presented to demon-
strate the performance of the proposed algorithms over a static pattern based FAP-

INV. Concluding remarks are in Section 6.5.

6.2 Factored Sparse Approximate Inverses

In this section, we first review a general framework of a factored inverse and an incom-
plete factored inverse algorithms, and this framework will be utilized in Section 6.3
to justify our sparsity pattern algorithms.

Zhang [69] proposed an algorithm of a factored inverse for sparse matrices, based

74

www.manaraa.com

on the Luo’s algorithm [47], in the form,
A= LDU, (6.1)

for a nonsingular matrix A of order n, where L = [Ly, Lo, - - - , L, is a lower triangular
matrix of order n, and L; is a column vector of length n with L,; =1,¢=1,2,--- n.
Similarly, U = [Uy,Us, - -+ ,U,]* is an upper triangular matrix with a row vector Uj
and U;; = 1,0 = 1,2,--- ,n, and D = diag[D11, D23, , Dy denotes a diagonal
matrix. The factored inverse algorithm that computes the inverse matrix, A1, of

Equation (6.1) is presented in Algorithm 6.2.1.

Algorithm 6.2.1. FACTORED INVERSE ALGORITHM FOR DENSE MATRICES [47].

1. For j =n — 1 with step (-1)
2 Fori=j7+1,n

3 w’ = aj;+ 3y aje* L

4. Fori=j7+1,n

5 Uji = —wz(j) *« Dii— >0 i w,(gj) % Dy * Ug
6. Djj=1/(aj;+ > ;1 Uik *ar)
7. Fori=j7+1,n

8) =i+ Sy Ui x an

9 Fori=7+1,n

10. L;; = —z9 « D;; — ZZ:iH Z;(cj) * Dy g * Lig

)

Note that n refers to the order of the original matrix A, and a;; denotes a nonzero
element in row ¢ and column j, where 7,5 = 1,---,n. The upper inverse factor U
and the lower inverse factor L are computed in lines 2-7 and lines 9-14, respectively,

and the diagonal inverse is constructed in line 8. Although Algorithm 6.2.1 is written

(5]

www.manharaa.com

to compute the inverse of a dense matrix, it can be easily modified to compute the
inverse of a sparse matrix [69].

For a sparse matrix, we can see that the L and U matrices computed by Algo-
rithm 6.2.1 can be too dense, and the computational cost might be high [69]. Thus,
an incomplete inverse method that drops elements with small absolute values of the
inverse is usually employed to reduce the cost and maintain the sparsity of the inverse
factors. For example, Zhang [69] introduced an incomplete FAPINV algorithm that
applies a static dropping strategy in two parts (four places) of the computational pro-
cess to improve Algorithm 6.2.1. Specifically, for a given dropping tolerance 7 > 0,
the conditions [w!”| < 7 and |2”)| < determine the loop involving lines 2 4 and
9-11 to be skipped, respectively. After processing lines 5-7 and 12-14, U;; and L; ;

are dropped if their absolute values are smaller than or equal to 7.

Definition 6.2.1. A matriz A is said to be an M -matriz if it satisfies the following

four properties:
1. a;; >0 fori=1,--- n.
2.0;; <0 fori#j,4,5=1--- n
3. A is nonsingular.
4. A1 >0.

According to Maijerink and van der Vorst [52], a conventional incomplete LU
factorization can be executed in an exact factorization, and the computed pivots are
strictly positive when A is a nonsingular M-matrix. This holds true in FAPINV
associated with the inverse computed from Algorithm 6.2.1, and in the following,
Proposition 6.2.2 establishes a proof that is similar to Proposition 3.1 in [11] where

no breakdown in the incomplete process occurs if A is an M-matrix.

76

www.manaraa.com

Proposition 6.2.2. Let A be an M-matriz, and A~ = LDU be an inverse matriz
of A obtained by Algorithm 6.2.1, where L, D, and U are lower, diagonal, and upper

inverse factors of A, respectively. Then
>0 and Dj,j >0 (62)
for1<i,7 <n.

Proof. We will prove the inequalities in (6.2) by using induction. For j = n, the

inequalities are obviously true. In fact,
Lypy=Unn=1and Dy, = 1/ap, > apn ' > 0.

Now, the following inductive assumptions are considered for j < n — 1 and j+2 <

1< n.
Uj+1,z‘ = —w§j+1) kS Di,i — Z wl(cj+1) % Dk,k % Uk,i 2 0, (63)
k=j+2
Li,j+1 = —Z£j+1) X Di,i — Z Z,E:j+1) X Dk,k X Li,k Z 0, and (64)
k=j+2
Djsrjr = (i + Y Ujprp * ag) > 0. (6.5)
k=j+2

From the inductive assumptions (6.3) and (6.4), we get U;x > 0 and L;; > 0 for
(4)

i

i+1 <k <mn.Also, a;; and a;; are nonpositive since A is an M-matrix. Hence, w

)

and zgj can be expressed by

ng) = aj,i + Z aj,k * Lk,z’ S 0 and Zz-(j) = ai,j + Z Ui,k k ak,j S 0, (66)
k=i+1 k=i+1
where 7 + 1 < 4 < n. Using the updating formula given in Algorithm 6.2.1 for

L we have

U

YRR

i, and Djj,

i—1
Uj,z' = —’U)z(J) * Dz’,i - Z ’Ll),(g]) S Dk,k S Uk,i Z 0,
k=j+1

77

www.manharaa.com

i—1
Lij=—2" % Dy; - Z 2 % Dy + Ly; > 0,
k=j+1

and

Dj;=1/(aj;+ Y Ujr*ag;) > 0.

k=j+1

Therefore, no component of U;; and L;; can become negative, and D, ; remains pos-

itive. []

Incompleteness arises from FAPINV due to the dropping of nonzero fill-ins and
causes the algorithm to produce smaller or equal absolute entries than those of the
inverse factorization from Algorithm 6.2.1. In accordance with such facts and the
result of Proposition 6.2.2, we can see that FAPINV also generates a nonnegative

factored approximate inverse when A is an M-matrix.

Proposition 6.2.3. Let A be an M-matriz, and A~ = LDU be an inverse matriz
of A obtained by Algorithm 6.2.1, where L, D, and U are lower, diagonal, and upper
inverse factors of A, respectively. If G = LDU is a factored approzimate inverse
computed by FAPINV [69], where f,, D, and U are lower, diagonal, and upper inverse
factors, respectively. Then

D' <G<A™ (6.7)

where D 4 is the diagonal part of A.

Proof. Since the elements of L, and U are obtained from L and U by dropping ele-
ments if the absolute value of the elements are smaller than a dropping tolerance T,
then

L<L, D<D, andU<U.

Hence, we can easily get G < AL,

From Proposition 6.2.2, we know that
Ujr > 0, and a;; < 0.

78

www.manharaa.com

It follows that

n
0<a;;+ E Ujrxary < ajj.
k=j+1

Therefore,

Dj; > 1/aj;.

As the results of Proposition 6.2.2 and Proposition 6.2.3, we have found that both
the exact factored inverse computed by Algorithm 6.2.1 and FAPINV [69] construct

nonnegative inverses when A is an M-matrix.

6.3 Dynamic Sparsity Pattern based Factored Approximate Inverse Pre-

conditioners

We now introduce two algorithms that determine dynamic sparsity patterns for FAP-
INV preconditioners on solving general sparse matrices. In determining the sparsity
pattern, we exploit information of the inverse and original factors by the following
two supporting reasons that (1) the entries of FAPINV are computed by the origi-
nal and previously computed inverse triangular factors [69], and (2) the norm of the
inverse factor is strongly related with the dropping tolerance of FAPINV [14]. From
that point of view, (1) our first algorithm, Norm-Largest-Dynamic sparsity pattern
in Algorithm 6.3.1, computes FAPINV with the dynamic sparsity pattern using the
norm of the inverse factors multiplied by the largest absolute value of the original
factors, and (2) the second, Norm-Norm-Dynamic sparsity pattern Algorithm 6.3.2,

employs the norm of the inverse factors divided by the norm of the original factors.

Algorithm 6.3.1. FAPINV wiTH NORM-LARGEST-DYNAMIC SPARSITY PAT-

TERN.

79

www.manaraa.com

1. Find the largest absolute values, Larger, and Largey,
of the lower and upper parts of A

2. For j =n,1 with step (-1)

J Cu(d) =Cj) =0

4. Fori=j3+1,n

5 Compute Uj; by using FAPINV [69]

6. If (U] > Cu(4)), then Cu(4) = Uyl
7. nu = Cu(j) * Largey
8. If (ny >1) thent=1/ny

9. Fori=j+1n

10. If (\U;;| <), thenU;; =0

1. Djj=1/(aj; + 3 ki1 Ujn * ar)

12. Fori=j+1,n

13. Compute L;; by using FAPINV [69]
14. If (|Lij| > ¢o(j)). then (L(j) = |Li;]
15. L = (u(j) * Larger,

16. If (n, > 1), then 7 =71/

17 Fori=j+1,n

18. If (\[L;;| <7), then L;; =0

Note that Larger and Largey refer to the largest absolute values of the lower and
upper triangular factors of the original matrix, respectively. The (y(j) and (7.(j) in
lines 6 and 15 denote the largest absolute values of the columns UJT and Lj, respec-
tively. The upper inverse factor U and the lower inverse factor L are computed in
lines 4-12 and lines 14-22, respectively, and the diagonal inverse D is constructed in
line 13. In lines 5 and 15, U;; and L; ; can be obtained by using the FAPINV algo-

9.and 19, the dropping tolerance 7 is determined by ny and 7y,

80

www.manharaa.com

and the value of 7 is updated for each j. Finally, in lines 10-12 and 20-22, if the
absolute value of an element is smaller than the tolerance 7, the element is then

dropped.
Algorithm 6.3.2. FAPINV wiTH NORM-NORM-DYNAMIC SPARSITY PATTERN.
1. Fori=1,n

2. U,(i) = the largest absolute value in the row i of the upper triangular factor of A.

3. L,(i) = the largest absolute value in the row i of the lower triangular factor of A.

B

For j =n,1 with step (-1)
6. Cu(j)=¢(i) =0
Fori=7+1,n
Compute U;; by using FAPINV [69]
If (U;4] > Cu(j)), then (u(j) = |Ujl
1.y = Cu(4)/Uy(5)
12. If (ny > 1), then 7 =7/ny

AN

13. Fori=j+1,n

14. If U;; <7), thenU,;, =0

16. Djj=1/(aj; + Y i1 Uik * ar)

17 Fori=j+1,n

18. Compute L;; by using FAPINV [69]
19. If (|Lij| > C(5)), then (r(j) = |Lil
21, nr = C(5)/Ln(4)

22. If (n, > 1), then T =1/n

23. Fori=j+1,n

2. If (Lij <), then L;; =0

gorithm 6.3.1, the upper inverse factor U and the lower inverse

|_i}>| ‘

www.manharaa.com

factor L are computed in lines 7-15 and lines 17-25, respectively, and the diagonal
inverse D is constructed in line 16.
Let G7 and G5 be two FAPINV preconditioners of a matrix A. If a given dropping

tolerance of (57 is greater than or equal to that of GGy, then
Lyij < Loy, Uiy <Usjy, and Dy < Doy,

where G = LiDU; and Gy = LoDyU,. Also, from Proposition 6.2.3, we know that
(G and (G5 are nonnegative matrices if A is an M-matrix. Thus, the following propo-

sition is straightforward.

Proposition 6.3.1. Let A be an M-matriz and A~ = LDU be the inverse matriz of
A. If Gy = LD Uy is obtained by FAPINV [69] with a static dropping tolerance T,
Gy = LaDyUs is from Algorithm 6.3.1 or Algorithm 6.3.2 with a dynamic dropping

tolerance 1o, and 7 > 1. Then
D' <G <Gy <Al (6.8)
where Dy is the diagonal part of A.

Proof. Based on the Algorithm 6.3.1 and Algorithm 6.3.2, 7 is determined by 7.
Specifically, in computing L and U, 75 = 71/n;, and 75 = 71/ny where n;, > 1 and

ny > 1, respectively. Because of 7y > 75 and by Proposition 6.2.2,
0< Ly; <Lyj; 0<ZUy; <Usjy, and 0< Dy < Doy

It follows that G; < (Gs. [|

As we can see in Proposition 6.3.1, the accuracy of FAPINV depends on the value
of the dropping tolerance 7. This implies that the FAPINV preconditioners with the
dynamic sparsity patterns become more accurate than the FAPINV with a static
sparsity pattern. We present the comparisons between a static and dynamic pattern

preconditioners in Table 6.4.

82

www.manharaa.com

6.4 Numerical Experiments

We present numerical experiments of FAPINV with the proposed selection strategies
of dynamic sparsity patterns on solving a few general sparse matrices. The descrip-

1 were solved as they

tions of the test matrices are given in Table 6.4. The matrices
were, that is, no scalings or permutations were applied.

The FAPINV (for factored approximate inverse) [69] preconditioner was used as
an approximate inverse right preconditioner in the experiments. The preconditioned
iterative solver employed was GMRES(50). For all linear systems, the right-hand
side was generated by assuming that the solution is a vector of all ones. The initial
guess was a zero vector. The iteration was terminated when the ls-norm of the initial
residual was reduced by at least eight orders of magnitude, or when the number
of iterations reached 500. The programs of our approaches were coded in standard
Fortran 77 programming language in double precision with 64-bit arithmetic, and
the computations were carried out on a Sun-Blade-100 workstation with a 500 MHz
UltraSPARC III CPU and 1 GB of RAM.

In all tables with numerical results, STATIC denotes an FAPINV [69] precon-
ditioner with a static sparsity pattern. NLD and NND represent FAPINV precon-
ditioners with Norm-Largest-Dynamic and Norm-Norm-Dynamic sparsity patterns
described in Algorithm 6.3.1 and Algorithm 6.3.2, respectively; The “iter” refers to
the number of GMRES iterations, the “time” represents the CPU time in seconds
for computing the preconditioner and for the solution phase, and “spar” denotes the
sparsity ratio that is the ratio of the number of nonzero elements of the precondi-
tioner to that of the original matrix; The dropping tolerance “7” is utilized as both
a dropping tolerance of STATIC and initial dropping tolerances of NLD and NND;

The value “-1” indicates the failure of convergence within the maximum number of

LAll of these matrices are available on-line from the Matrix Market of the National Institute of
Standards and Technology at http://math.mist.gov/matrixMarket.

83

www.manaraa.com

Table 6.1: Description of the test matrices ; n, nnz, nnzdiag, and condition denotes
the order, the number of nonzero entries, the number of nonzero entries on the main
diagonal, and the condition number of a matrix, respectively. Under “N/A”, we
report that the condition number was not available from Matrix Market [50].

Matrix Description n nnz nnzdiag | condition
CAVITYO03 | Driven Cavity Problems 317 7311 243 | 3.30E4-06
CAVITYO04 | Driven Cavity Problems 317 5923 243 | 1.40E+07
CAVITY06 | Driven Cavity Problems 1182 | 32747 883 N/A
CAVITYO08 | Driven Cavity Problems 1182 | 32747 883 N/A
CAVITY11 | Driven Cavity Problems 2597 | 76367 1923 N/A
CAVITY13 | Driven Cavity Problems 2597 | 76367 1923 N/A
CAVITY15 | Driven Cavity Problems 2597 | 76367 1923 N/A
E05R0300 Driven cavity driven cavity,

5x5 elements, Re= 300 236 5856 162 | 1.30E406
E05R0400 Driven cavity driven cavity,

5x5 elements, Re= 400 236 5846 162 | 2.40E+06
E05R0500 Driven cavity driven cavity,

30x30 elements, Re=500 9661 | 306002 6962 | 1.31E+11
FIDAPO06 | Matrices generated

by the FIDAP Package 1651 | 49479 1180 | 3.45E+21
FIDAPO020 | Matrices generated

by the FIDAP Package 2203 | 69579 1603 | 5.89E408
FIDAPO021 | Matrices generated

by the FIDAP Package 656 | 18962 476 | 9.10E+08
FIDAPO025 | Matrices generated

by the FIDAP Package 848 | 24261 608 | 7.90E+07
FIDAPO026 | Matrices generated

by the FIDAP Package 2163 | 93749 1706 | 4.66E+18
FIDAPMO02 | Matrices generated

by the FIDAP Package 537 | 19145 441 | 1.40E+05
LNS 131 Fluid flow modeling 131 536 112 | 1.50E+15
NNC261 Nuclear reactor models 261 1500 150 | 1.20E+15
NNC666 Nuclear reactor models 666 4032 410 | 1.80E+11

allowed iterations (500).

Comparison of Preconditioners with Static and Dynamic Pattern

Table 6.4 shows the comparisons between a static and dynamic sparsity pattern for

the FAPINV preconditioners with two different settings of the dropping tolerance,

7=0.1and 7 = 0.01.

84

www.manaraa.com

Table 6.2: Comparisons of the number of preconditioned GMRES iterations with
different sparsity pattern based FAPINV preconditioners.

7=0.1 7=0.01
STATIC | NLD | NND STATIC NLD NND |

Matrix iter iter iter iter | spar || iter | spar || iter | spar
CAVITYO03 -1 37 41 -1 | 8.32 19 | 9.16 36 | 8.95
CAVITY04 -1 25 22 -1 6.19 10| 7.35 23 | 835
CAVITYO06 -1 -1 22 -1 7.07 -1 | 15.55 15 | 30.96
CAVITYO08 -1 -1 40 -1 | 18.02 46 | 25.71 22 | 31.48
CAVITY11 -1 -1 31 -1] 9.10 -1 | 25.49 22 | 65.57
CAVITY13 -1 -1 58 -1 | 21.57 -1 | 43.55 33 | 65.63
CAVITY15 -1 -1 92 -1] 44.40 -1 1 52.39 40 | 67.95
E05R0300 -1 -1 33 || 197 | 5.26 28 | 7.19 20 | 8.22
E05R0400 -1 -1 46 -1 | 6.37 18 | 8.13 23 | 8.56
E05R0500 -1 100 47 -1 | 6.98 15 | 8.72 23 | 9.03
FIDAPO006 -1 94 295 -1] 21.72 9| 35.71 37 | 43.52
FIDAP020 -1 -1 14 -1 | 18.08 -1] 27.85 7| 6247
FIDAPO21 -1 -1 27 -1] 831 -1 | 13.57 19 | 20.28
FIDAPO025 -1 -1 7 -1] 16.21 -1] 19.83 4 | 28.82
FIDAPO026 -1 452 220 -1 19.0383 || 191 | 21.83 || 124 | 34.28
FIDAPMO02 -1 -1 36 -1 691 42 | 10.77 14 | 13.13
LNS 131 -1 -1 5 -1] 2.65 3| 5.12 41 9.89
NNC261 -1 15 36 -1] 21.23 28 | 28.52 30 | 27.06
NNC666 -1 17 44 -1 | 46.16 17 | 60.53 28 | 57.29

As seen in the table, STATIC failed in solving any of the test matrices with the
two values of 7 except EO5R0300 that was solved in 197 iterations when 7 = 0.01,
whereas NLD and NND solved the matrix in 28 and 20 iterations, respectively. NND
solved all the test matrices, while NLD solved 7 and 12 of the test matrices when
7 =10.1 and 7 = 0.01, respectively.

In terms of space complexity, NLD and NND demanded more memory space than
STATIC on solving the test matrices, but it would seem relatively minor compared
to the number of iterations with convergence. For example, NND and NLD solved
the CAVITY03, CAVITY04, E05R0500, and NNC666 matrices in 36, 10, 15, and
28 iterations with 1.075, 1.187, 1.249, and 1.241 times more memory storages than

STATIC with no convergence, respectively.

85

www.manaraa.com

Comparison with Strategies of Dynamic Sparsity Pattern
We compare our algorithms, NLD and NND, with the one by Bollhéfer [15] in Ta-
ble 6.4. Under “N/A,” we report that the value is not available due to no convergence,

Table 6.3: Comparisons with different dynamic sparsity pattern strategies.

7 =10.01
NND Bollhofer’s NLD
Matrix iter | time spar || iter | time | spar || iter | time | spar

CAVITYO03 36 0.53 | 8.95 47 | 0.57 | 8.63 19| 0.45 | 9.16
CAVITY04 23 0.43 | 8.35 28| 038 | 7.24 10| 032 | 7.35
CAVITYO06 15 | 16.85 | 30.96 -1 | N/A | 14.72 -1 | N/A | 15.55
CAVITYO08 22 | 17.79 | 31.48 || 355 | 28.73 | 21.89 46 | 15.09 | 25.71
CAVITY11 22 | 137.27 | 65.57 -1 | N/A | 21.21 -1 | N/A | 25.49
CAVITY13 33 | 141.67 | 65.63 -1 | N/A | 35.02 -1 | N/A | 43.55
CAVITY15 40 | 149.86 | 67.95 -1 | N/A | 44.92 -1 | N/A | 52.39
E05R0300 20 0.28 | 8.22 33| 0.26 | 6.85 28| 0.26 | 7.19
E05R0400 23 0.30 | 8.56 42 | 033 | 7.63 18 | 0.27 | 8.13
E05R05600 23 0.32 | 9.03 42 | 035 | 8.36 15| 0.28 | 8.72
FIDAPO006 37| 24.17 | 43.52 46 | 25.87 | 43.68 91 15.55 | 35.71
FIDAPO020 7| 56.33 | 62.47 -1 | N/A | 28.95 -1 | N/A | 27.85
FIDAPO021 19 3.14 | 20.28 -1 | N/A | 13.75 -1 | N/A | 13.57
FIDAPO025 4 5.44 | 28.82 || 404 | 19.71 | 21.76 -1 | N/A | 19.83
FIDAPO026 | 124 | 89.99 | 34.28 -1 | N/A | 17.84 || 191 | 67.39 | 21.83
FIDAPMO2 14 1.73 | 13.13 46 | 1.98 | 11.05 42 | 1.85 | 10.77

LNS 131 4 0.01 | 9.89 -1 | N/A | 491 3| 001 | 5.12
NNC261 30 0.15 | 27.06 271 0.14 | 27.03 28 | 0.16 | 28.52
NNC666 28 1.17 | 57.29 18 | 0.99 | 57.56 17 | 1.05 | 60.53

and “Bollhofer’s” refers to the preconditioner with a dynamic sparsity pattern pro-
posed in [15].

Based on the numerical results in Table 6.4, we reported the comparisons in
three aspects of accuracy, efficiency, and memory storage. In terms of accuracy,
NND performed better than Bollhdfer’s in most cases, and NLD was comparable to
Bollhofer’s. For example, NND solved all of the test matrices, while Bollhofer’'s and
NLD solved 11 and 12 of the test matrices, respectively. Specifically, the number of
iterations of NND is much smaller than that of Bollhéfer’s and NLD (See Figure 6.1),

and. NND. generally used less CPU time in solving the test matrices than Bollhofer’s.

86

www.manaraa.com

FAPINV
—— Bolhofer
~=ND
i]

= Bolhoer
c=ND
) oy

14
0
c
N ERLR
3
0
0
[3

1 I I I I I I I I I 1 I I I I I I I I I
0 0 B W B W B N K 0 0 5 00 1\ a0 B W X M s N

Number o eratons Number of terations

(a) The CAVITY03 matrix (b) The CAVITY08 matrix

Figure 6.1: The convergence curves of the CAVITY matrices.

Also, with respect to the storage space, NLD and NND might need slightly more
memory storage than Bollhofer’s, but NND still performed far better in convergence
than Bollhofer’s. For example, NLD using 1.174 times more memory storage solved

the CAVITYO0S8 matrix in 46 iterations while Bollhéfer’s solved in 355 iterations.

Computational Analysis

In this subsection, we analyze the convergence behavior of the Krylov subspace meth-
ods with respect to the distribution of the eigenvalues and the condition number of

the eigenvector matrix.

Table 6.4: Largest and smallest eigenvalues and conditioning information of the
LNS_131 matrix.

Matrix)‘largest Asmallest COIld(X)
A -1.19E405 | -1.23E-04 | 1.67TE+17
FAPINV(A) | -8.50E+67 | -2.29E-56 | 2.53E+30
NLD(A) | -1.55E122 | 8.29E-13 | 7.82E407
NND(A) -1.52E+22 | -1.43E-12 | 2.22E+08

Table 6.4 and Figure 6.2 (a) report that the condition number of the eigenvector
matrix of the original matrix A (LNS_131) is relatively large, and the eigenvalues

of the original matrix are spread on the positive and negative parts. The FAPINV

87

www.manaraa.com

preconditioned matrix (FAPINV(A)) shifted spectrum to the left hand side of the
origin (See Figure 6.2 (b)), but the condition number of the eigenvector matrix is
considerably large. As a result, the convergences of the GMRES method are failed
on the original matrix and FAPINV(A).

On the other hand, the NLD preconditioned matrix (NLD(A)) and the NND pre-
conditioned matrix (NND(A)) performed differently in the aspect of the condition
number of the eigenvector matrices. The condition numbers of the eigenvector ma-
trices of NLD(A) and NND(A) are significantly decreased as shown in Table 6.4. In
addition, the distribution of the eigenvalues of LNS_131 preconditioned by NLD and
NND shifted the spectrum to the left hand side of the origin (See Figure 6.2 (¢) and
(d)). These strongly support a good convergence behavior of the GMRES method on
these NLLD and NND preconditioned matrices although the condition number of the

NLD and NND preconditioned matrices are bit increased.

6.5 Concluding Remarks

We proposed two algorithms that determine the dynamic sparsity patterns for the
FAPINV preconditioners for solving general sparse matrices. In the computation
phase, the dropping tolerance has been adaptively determined by the norm of the
inverse factors and either the norm of the original factors or the largest value of
the original factors. Numerical experiments showed that FAPINV with the proposed
dynamic sparsity pattern generates more accurate and robust preconditioner than
FAPINV with not only a static sparsity pattern but also other dynamic sparsity

pattern (Bollhdfer’s) preconditioners do.

Copyright® Eun-Joo Lee, 2008.

88

www.manaraa.com

Imaginary Part
o

-0.01

-0.02

-0.03
-1

.5

-0.5 0 0.5 1 15

Real Part x10°

(a) Eigenvalues of the LNS_131 matrix

Imaginary Part
o N IS
T T

0
N
T

4tk

x 10

12

-6 L L L L L L L L
-16 -14 -12 -10 -8 -6 -4 -2) 2

Real Part x 102

(c) Eigenvalues of the LNS_131 matrix

with NLD

Imaginary Part
o

-1F

2L

-3t

-4

-9

-7 -6 -5 -4 -3 -2 -1 [¢]
Real Part

(b) Eigenvalues of the LNS_131 matrix

Imaginary Part
o

x 10

13

with FAPINV

-1 L L L L L L L
-16 -14 -12 -10 -8 -6 -4 -2 0 2

Real Part x 102

(d) Eigenvalues of the LNS_131 matrix

with NND

Figure 6.2: Plots of the eigenvalues of the LNS_131 matrix. (These subfigures are in
different scale.)

89

www.manharaa.com

Chapter 7 Conclusions and Future Work

In solving large and sparse linear systems, which are usually generated from many
computational science and engineering problems, preconditioned Krylov subspace
methods are generally considered. This dissertation has been mainly focused on pre-
conditioning techniques to improve the performance and reliability of iterative meth-
ods in solving linear systems. In this chapter, we summarize the specific contributions

of this dissertation and present opportunities for future work.

7.1 Accomplishments

Preconditioned Krylov subspace methods are generally regarded as one class of the
most promising techniques [9, 17, 19, 41| for solving very large and sparse linear sys-
tems. In general, incomplete lower-upper (ILU) triangular factorizations and sparse
approximate inverse (SAI) preconditioning techniques have attracted much attention
as a preconditioner because they have been successful in solving many symmetric
and non-symmetric matrices. These techniques, however, may yield two common
problems. Firstly, their accuracy may be insufficient to yield an adequate rate of
convergence due to the difficulty in determining parameters or threshold values in
constructing preconditioners. In addition, they may encounter difficulty when the
matrix to be solved is indefinite, that is, when the matrix has both positive and neg-
ative eigenvalues. Specifically, small or zero pivots in indefinite matrices may produce
unstable and inaccurate preconditioners. In response to these problems associated
with preconditioning techniques, we have concerned with improving accuracy and

stability of a preconditioner in solving large and sparse matrices.

90

www.manaraa.com

Incomplete LU (ILU) Preconditioning Enhancement Strategies

Several preconditioning enhancement strategies for improving inaccurate precondi-
tioners produced by the incomplete LU factorizations of sparse matrices were pre-
sented. The strategies employ the elements that are dropped during the incomplete
LU factorization and utilize them in different ways by separate algorithms. The first
strategy (error compensation) applies the dropped elements to the lower and upper
parts of the LU factorization to compute a new error compensated LU factorization.
Another strategy (inner-outer iteration), which is a variant of the incomplete LU
factorization, embeds the dropped elements in its iteration process. Experimental
results showed that the presented enhancement strategies improve the accuracy of
the incomplete LU factorization when the initial factorizations found to be inaccu-
rate. Furthermore, our numerical experimental results showed that in many cases,
the convergence cost of the preconditioned Krylov subspace methods is reduced on

solving the original sparse matrices with the proposed strategies.

Hybrid Reordering Strategies

Incomplete LU factorization techniques often have difficulty on indefinite sparse ma-
trices. We presented hybrid strategies for such matrices and new diagonal reorderings
that are in conjunction with a symmetric nondecreasing degree algorithm. We first use
the diagonal reorderings to efficiently search for entries of single element and/or the
maximum absolute value to be placed on the diagonal for computing a nonsymmet-
ric permutation. In addition, a nondecreasing degree algorithm is applied to reduce
the fill-in during the ILU factorization. With the reordered matrices, we achieved
a considerably improved performance of incomplete LU factorizations in stability.
Consequently, the convergence cost of preconditioned Krylov subspace methods was

reduced on solving the reordered indefinite matrices.

91

www.manaraa.com

Two-Phase Preconditioning Strategy

As a part of the continuous effort on solving indefinite matrices, a two-phase precon-
ditioning strategy based on a factored sparse approximate inverse has been proposed.
In each phase, the strategy first makes the original matrix diagonally dominant to
enhance the stability by a shifting method and constructs an inverse approximation of
the shifted matrix by utilizing a factored sparse approximate inverse preconditioner.
The two inverse approximation matrices produced from each phase are then combined
to be used as a preconditioner. Experimental results showed that the presented strat-
egy improves the accuracy and the stability of the preconditioner on solving indefinite
sparse matrices. Furthermore, the strategy ensures that convergence rate of the pre-
conditioned iterations of the two-phase preconditioning strategy is much better than

that of the standard sparse approximate inverse ones for solving indefinite matrices.

Factored Approximate Inverse Preconditioners with Dynamic Sparsity

Patterns

We proposed two sparsity pattern selection algorithms for factored approximate in-
verse preconditioners to enhance the performance of the preconditioned iterative
solvers. The sparsity pattern is adaptively updated in the construction phase by
using combined information of the inverse and original triangular factors of the orig-
inal matrix. In order to determine the sparsity pattern, our first algorithm uses the
norm of the inverse factors multiplied by the largest absolute value of the original
factors, and the second employs the norm of the inverse factors divided by the norm
of the original factors. Experimental results showed that these algorithms improve

the accuracy and robustness of the preconditioners on solving general sparse matrices.

92

www.manaraa.com

7.2 Future Work

Our research area fits well with other fields and disciplines as we have significant
collaborative experience with researchers from computer vision areas [40]. Thus, our
future work will be applying the preconditioning methods to real-world applications in

order to achieve an improved performance in computational time as well as accuracy.

Preconditioner Recommendation System

My first plan for future work is to develop a preconditioner recommendation system
for indefinite matrices based on the features of matrices [65, 66]. This idea is inspired
by the fact that sparse matrices arising from discretized partial differential equation
problems possess certain different features represented by the sizes and the locations
of their nonzero entries. Thus, if it can be determined that the performance of
preconditioned Krylov subspace methods is related to such matrix features, it will be
possible to predict the performance of these preconditioned methods to solve other

sparse matrices that may have the same or similar features.

Application Areas

Along with the development of a preconditioner recommendation system, my future
work will also be concentrated on applying these strategies presented above with
existing preconditioners and solvers. More specifically, the new decomposition tech-
niques, aiming at solving irregularly structured sparse linear systems, will also be
used for potential application areas. Computational fluid dynamics, large scale com-
puter modeling and simulations are two examples in which large scale linear systems
are routinely solved, and our preconditioning techniques can be extended to accom-

modate the requirement of the applications.

Copyright© Eun-Joo Lee, 2008.

93

www.manaraa.com

Bibliography

[1] K. Atkinson An Introduction to Numerical Analysis. John Wiley&Sons, New
York, 1988.

2] O. Axelsson A survey of preconditioned iterative methods for linear systems of
algebraic equations. BIT, 25 (1985), 166-187.

3] O. Axelsson [terative Solution Methods. Cambridge Univ. Press, Cambridge,
1994.

[4] S.T. Barnard, L.M.Bernado, and H.D. Simon. An MPI implementation of the
SPAI preconditioner on the T3E. Technical Report LBNL-40794, Ernest Or-
lando Lawrance Berkeley National Laboratory, Berkely, CA, 1997.

[5] R. Barrett, M. Berry, T. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eikhout,
V. Pozo, C. Romine, and H. van der Vorst. Templates for the Solution of Linear
Systems: Building Blocks for Iterative Methods. STAM, Philadelphia, 1994.

6] M. W. Benson and P. O. Frederickson. Iterative solution of large sparse linear

systems arising in certain multidimensional approximation problems. Utilitas
Math., 22 (1982), 127 140.

7] M. W. Benson, N. Krettmann, and M. Wright. Parallel algorithms for the
solution of certain large sparse linear systems. Int. J. Comput. Math., 16 (1984),
245-260.

[8] M. Benzi. Preconditioning techniques for large linear systems: a survey. J.
Comput. Phys., 182:418-477 (2002).

9] M. Benzi and D. Bertaccini, Approzimate inverse preconditioning for shifted
linear systems, BIT, 43 (2003), 231 244.

[10] M. Benzi, J.C. Haws, and M. Tuma. Preconditioning highly indefinite and non-
symmetric matrices. SIAM J. Sci. Comput., 22:1333-1353 (2000).

[11] M. Benzi, C.D. Meyer, and M. Tuma, A sparse approximate inverse precondi-
tioner for the conjugate gradient method, STAM J. Sci. Comput., 17-5 (1996),
1135 1149.

[12] M. Benzi and M. Tuma, A comparative study of sparse approximate inverse
preconditioners, Applied Numerical Meth., 30-2-3 (1999), 305-340.

[13] M. Benzi and M. Tuma, A sparse approzimate inverse preconditioner for non-
symmetric linear systems, STAM J. Sci. Comput., 19-3 (1998), 968 994.

[14] M. Bollhdfer, A robust ILU with pivoting based on monitoring the growth of the
inversefactorsyLinear Algebra and its Applications, 338 (2001), 201-218.

94

www.manaraa.com

[15] M. Bollhéfer, A robust and efficient ILU that incorporates the growth of the
inverse triangular factors, SIAM J. Sci. Comput., 25-1 (2003), 86-103.

[16] T.F. Chan, W.P. Tang, and W.L. Wan, Wauvelet sparse approzimate inverse
preconditioners, BIT, 37-3 (1997), 644 660.

[17] T.F. Chan, and H.A. van der Vorst, Approzimate and incom-
plete factorizations, Parallel Numerical Algorithms, ICASE/LaRC In-
terdisciplinary Series in Science and Engineering 4 (1997), 91-118.
(http://www.math.uu.nl/people/vorst/publ.html#publ94)

(18] E. Chow and Y. Saad, Approzimate inverse preconditioners for general sparse
matrices, Technical Report UMSI 94/101 (1994), Minnesota Supercomputer
Institute, University of Minnesota, Minneapolis, MN.

[19] E. Chow and Y. Saad, Ezperimental study of ILU preconditioners for indefinite
matrices, J. Comput. Appl. Math., 86 (1997), 387 414.

[20] E. Chow and Y. Saad, Approzimate inverse preconditioners via sparse-sparse
iterations, STAM J. Sci. Comput., 19 (1998), 995-1023.

[21] E. Chow and Y. Saad, Approzimate inverse techniques for block-partitioned
matrices, SIAM J. Sci. Comput., 18 (1997), 1657 1675.

[22] J. D. F. Cosgrove, J. C. Diaz, and A. Griewank. Approzimate inverse precon-
ditionings for sparse linear systems. Internat. J. Comput. Math., 44 (1992),
91 110.

(23] B.S. Datta Numerical linear algebra and applications. Brroks/Cole Publishing
Company, Pacific Grove, CA, 1995.

[24] T.A. Davis. University —of Florida sparse matriz collection.
http://www.cise.ufl.edu/research /sparse/matrices, 1997.

[25] J. W. Demmel. Applied Numerical Linear Algebra. STAM, Philadelphia, 1997.

[26] J. J. Dongarra, 1. S. Duff, D. C. Sorensen, and H. A. van der Vorst. Numerical
Linear Algebra for High-Performance Computers. SIAM, Philadelphia, 1998.

[27] LS. Duff. Algorithm 575: Permutations for zero-free diagonal. ACM Trans.
Math. Software, 7:387 390 (1981).

(28] I.S. Duff, G.A. Erisman, and J.K. Reid. Direct Methods for Sparse Matrices.
Claredon Press, New York, 1986.

[29] LS. Duff, R.G. Grimes, and J.G. Lewis. Users’ Guide for the Harwell-Boeing
Sparse Matriz Collection (Release I). Technical Report RAL-92-086, Rutherford
Appleton Laboratory, Oxfordshire, England, 1992.

95

www.manaraa.com

[30]

31]

32]

33]

[34]

[35]

[36]

37]

[38]

39]

[40]

[41]

[42]

[43]

[.S. Duff, and J. Koster. The design and use of algorithms for permuting large
entries to the diagonal of sparse matrices. SIAM J. Matrix Anal. Appl., 20:889-
901 (1999).

[.S. Duff, and J. Koster. On Algorithms for Permuting Large Entries to the
Diagonal of a Sparse Matriz. STAM J. Matrix Anal. Appl., 22:973-996 (2001).

[.S. Duff, and G.A. Meurant, The effect of reordering on preconditioned conju-
gate gradients. BIT, 29:635-657 (1989).

A.C.N. van Duin, Scalable parallel preconditioning with the sparse approximate
inverse of triangular matrices, SIAM J. Matrix Anal. Appl. 20 (1999), 987
1006.

H.C. Elman, A stability analysis of incomplete LU factorization, Math. Com-
put., 47 (1986), 191 217.

G.H. Golub and H.A. var der Vorst, Closer to the solution:iterative solvers, In 1.
S. Duff and G. A. Watson, editors, The state of the Art in Numerical Analysis,
Clarendon Press, Oxford, pages 63-92, 1997.

G.H. Golub and C.F. Van Loan, Matirz computations, Johns Hopkins, Balti-
more and London, 1996.

N.I.M. Gould and J.A. Scott, Sparse approzimate-inverse preconditioners using
norm-minimization techniques, SIAM J. Sci. Comput., 19-2 (1998), 605-625.

G.A. Gravvanis, An approximate inverse matriz technique for arrowhead ma-
trices, Intern. J. Computer Math., 70 (1998), 35 45.

A. Greenbaum, lterative Methods for Solving Linear Systems, SIAM, Philadel-
phia, 1997.

E. Grossmann, E.-J. Lee, P. Hislop, D. Nister and H. Stewenius, Are two
rotational flows sufficient to calibrate a smooth non-parametric sensor?, Pro-

ceedings of the 2006 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition, 1 (2006), 1222-1229.

M.J. Grote and T. Huckle, Parallel preconditioning with sparse approzimate
inverses, SIAM J. Sci. Comput., 18 (1997), 838 853.

N. Kang, J. Zhang, and E. S. Carlson. Parallel simulation of anisotropic diffu-
sion with human brain DT-MRI data. Computers and Structures, 82(28):2389-
2399, 2004.

S. Karaa, J. Zhang, and C. C. Douglas. Preconditioned multigrid simulation of
an axisymmetric laminar diffusion flame, Math. Comput. Model., 38:269 279,
2003.

96

www.manaraa.com

[44]

[45]

[46]

[47]

48]

[49]

D.S. Kershaw, On the problem of unstable pivots in the incomplete L U-conjugate
gradient method, J. Comput. Phys. 38 (1980), 114-123.

L. Y. Kolotina and A.Y. Yeremin. Fuctored sparse approrimate inverse precon-
ditioning I:theory. STAM J. Matrix Anal. Appl., 14 (1993), 45 58.

E.-J. Lee, and J. Zhang, Hybrid reordering strategies for ILU preconditioning
of indefinite sparse matrices, J. Appl. Math. Comput., 22:307-316 (2006).

J.-G. Luo, An incomplete inverse as a preconditioner for the conjugate gradient
method, Computer Math. Applic., 25-2 (1993), 73 79.

J.-G. Luo, A new class of decomposition for inverting asymmetric and indefinite
matrices, Computer Math. Applic., 25-4 (1993), 95-104.

J.-G. Luo, A sparsity for decomposing a symmetric matriz, Computer Math.
Applic., 25-5 (1993), 83 90.

The Matrix Market of the National Institute of Standards and Technology,
http://math.mist.gov/matriztMarket.

T.A. Manteuffel, An incomplete factorization techniques for positive definite
linear systems, Math. Comput., 34 (1980), 473 497.

J.A. Meijerink and H.A. Van Der Vorst, An iterative solution method for linear
systems of which the coefficient matriz is asymmetric M-matriz, Math. Comp.,
31 (1977), 148-162.

J. Meixner. Network theory and its relation to the theory of linear systems.
Antennas and Propagation, IEEE Transactions, 7-5 (1959), 435 439.

Y. Saad, ILUT: a dual threshold incomplete LU factorization, Numer. Linear
Algebra Appl. 14 (1994), 387-402.

Y. Saad. [terative Methods for Sparse Linear Systems. PWS, New York, 1996.

Y. Saad and M. Schultz, Conjugate gradient-like algorithms for solving non-
symmetric linear systems. Mathematics of Computation, 44 (1985), 417-424.

Y. Saad and H. A. van der Vorst. [lterative Solution of Linear Systems in the
20-th Century. Journal of Computational and Applied Mathematics, 123-1-2
(2000), 1-33.

H.D. Simon. Incomplete LU preconditioners for conjugate-gradient-type itera-
tive methods. in Proceedings of the 1985 SPE Reservoir Simulation Symposium,
Richardson, TX, Society of Petroleum Engineers, pp. 387 396 (1985).

W.-P. Tang. Towards an effective sparse approrimate inverse preconditioner.

SIAM J. Matrix Anal. Appl., 20-4 (1999), 970-986.

97

www.manaraa.com

60] L. N. Trefethen and D. Bau. Numerical Linear Algebra. SIAM, Philadelphia,
1997.

[61] R.S. Varga. Matriz Iterative Analysis. Springer Verlag, Berlin, New York, 2000.

62] K. Wang, S. Kim, and J. Zhang, A comparative study on dynamic and static
sparsity patterns in parallel sparse approrimate inverse preconditioning, Journal
of Mathematical Modeling and Algorithms, 3-2 (2003), 203-215.

63] K. Wang and J. Zhang, MSP: A class of parallel multistep successive sparse
approximate inverse preconditioning strategies, SIAM J. Sci. Comput., 24-4
(2003), 1141 1156.

64] L. Wang and J. Zhang, A two step combined stable preconditioning strategy
for incomplete LU factorization of CFD matrices, Appl. Math. Comput., 144-1
(2003), 75 87.

[65] S. Xu, E.-J. Lee, and J. Zhang, An interim analysis report on preconditioners
and matrices, Technical Report No.388-03, Department of Computer Science,
University of Kentucky, KY, 2003.

[66] S. Xu, E.-J. Lee, and J. Zhang, Designing and building an intelligent pre-
conditioner recommendation system (a progress report), In Abstracts of the
2003 International Conference on Preconditioning Techniques for Large Sparse
Matrix Problems in Scientific and Industrial Applications, Napa, CA, 2003.

[67] J. Zhang. Preconditioned Krylov subspace methods for solving nonsymmetric
from CFD applications. Comput. Methods Appl. Mech. Engrg., 189:825 840
(2000).

[68] J. Zhang, A multilevel dual reordering strateqy for robust incomplete LU fac-
torization of indefinite matrices, SAIM J. Matrix Anal. Appl., 22-3 (2001),
925 947.

[69] J. Zhang, A sparse approzimate inverse technique for parallel preconditioning
of general sparse matrices, Appl. Math. Comput., 130-1 (2002), 63-85.

[70] J. Zhang, A. Pardhanani, G. Carey Performance of adaptive dual-dropping
ILUT preconditioners in semiconductor dopant diffusion simulation, Interna-
tional J. Numerical Modelling: ElectronicNetworks, Devices and Fields, 15-2
(2002), 147-167.

98

www.manaraa.com

Vita

Personal Data:
Name: Eun-Joo Lee
Date of Birth: 10/04/1966
Place of Birth: Gwangju, South Korea

Educational Background:

e Aug. 1997: Ph.D.
Department of Mathematics, Chonnam National University, Gwangju, South
Korea.

e Feb. 1991: M.S.
Department of Mathematics, Chonnam National University, Gwangju, South
Korea.

e Feb. 1989: B.S.
Department of Mathematics, Chonnam National University, Gwangju, South
Korea.

Professional Experience:

e Jan. 2004 - Present: Teaching Assistant,
Department of Computer Science, University of Kentucky, Lexington, KY,
USA.

e Jan. 2003 - Dec. 2003: Research Assistant,
Laboratory for High Performance Scientific Computing and Computer Simu-
lation, Department of Computer Science, University of Kentucky, Lexington,
KY, USA.

e Sep. 1997 - Feb. 1999: Lecturer,
Department of Mathematics, Sunchon National University, Sunchon, South Ko-
rea.

e Mar. 1994 - Feb. 1999: Lecturer,
Department of Mathematics, Chonnam National University, Gwangju, South
Korea.

e Sep. 1991 - Aug. 1992: Administrative Support Associate,
Department of Mathematics, Mokpo National University, Mokpo, South Korea.

99

www.manharaa.com

e Mar. 1989 — Feb. 1991: Teaching Assistant,
Department of Mathematics, Chonnam National University, Gwangju, South
Korea.

Awards:

e Student support from Graduate School Fellowship, University of Kentucky,
Mar. 2008.

e QOutstanding Teaching Assistant Award 2007, Department of Computer Science,
University of Kentucky, May 2007.

e Student support from Graduate School Fellowship, University of Kentucky,
Aug. 2006.

e Fellowship Award to attend The Seventh DOE ACTS Workshop, Lawrence
Berkeley National Lab, Aug. 2006.

e Student support from Graduate School Fellowship, University of Kentucky,
Mar. 2006.

e Student support from The Eighth Cooper Mountain Conference on Iterative
Methods, Mar. 2006.

e Student support from Graduate School Fellowship, University of Kentucky, May
2005.

Publications:

e E.-J. Lee and J. Zhang, A Two-phase Preconditioning Strategy of Sparse Ap-
proximate Inverse for Indefinite Matrices, Computers and Mathematics with
Applications (2008), in review.

e E.-J. Lee and J. Zhang, Factored approrimate inverse preconditioners with dy-
namic sparsity patterns, Journal of Computational and Applied mathematics
(2008), in review.

e E.-J. Lee and J. Zhang, A Two-phase Preconditioning Strategy of Sparse Ap-
proximate Inverse for Indefinite Matrices, Computers and Mathematics with
Applications (2008), in review.

e K. Grossmann, E.-J. Lee, P. Hislop, D. Nister and H. Stewenius, Are two rota-
tional flows sufficient to calibrate a smooth non-parametric sensor?, Proceed-
ings of the 2006 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, 1 (2006), 1222-1229.

100

www.manaraa.com

e E.-J. Lee and J. Zhang, Hybrid reordering strategies for ILU preconditioning
of indefinite sparse matrices, Journal of Applied Mathematics and Computing,
22-2 (2006), 307-316.

e S. Xu, E.-J. Lee, and J. Zhang, An interim analysis report on preconditioners
and matrices, Technical Report No.388-03, Department of Computer Science,
University of Kentucky, KY, 2003.

101

www.manharaa.com

	Accurate and Robust Preconditioning Techniques for Solving General Sparse Linear Systems
	Recommended Citation

	Title Page
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	List of Files
	Chapter 1
	1.1 Motivation
	1.2 Organization

	Chapter 2
	2.1 Preconditioned Iterative Methods
	2.2 Incomplete Factorization Preconditioners
	2.3 Sparse Approximate Inverses

	Chapter 3
	3.1 Introduction
	3.2 Preconditioning Accuracy Enhancement Strategies
	3.3 Experimental Results
	3.4 Conclusions and Remarks

	Chapter 4
	4.1 Introduction
	4.2 Hybrid Reordering Strategy
	4.3 Experimental Results
	4.4 Concluding Remarks

	Chapter 5
	5.1 Introduction
	5.2 Stabilized FAPINV Preconditioner
	5.3 Numerical Experiments
	5.4 Concluding Remarks

	Chapter 6
	6.1 Introduction
	6.2 Factored Sparse Approximate Inverses
	6.3 Dynamic Sparsity Pattern based Factored Approximate Inverse Preconditioners
	6.4 Numerical Experiments
	6.5 Concluding Remarks

	Chapter 7
	7.1 Accomplishments
	7.2 Future Work

	Bibliography

