
www.manaraa.com

University of Kentucky University of Kentucky 

UKnowledge UKnowledge 

University of Kentucky Doctoral Dissertations Graduate School 

2008 

Accurate and Robust Preconditioning Techniques for Solving Accurate and Robust Preconditioning Techniques for Solving 

General Sparse Linear Systems General Sparse Linear Systems 

Eun-Joo Lee 
University of Kentucky, elee3@csr.uky.edu 

Right click to open a feedback form in a new tab to let us know how this document benefits you. Right click to open a feedback form in a new tab to let us know how this document benefits you. 

Recommended Citation Recommended Citation 
Lee, Eun-Joo, "Accurate and Robust Preconditioning Techniques for Solving General Sparse Linear 
Systems" (2008). University of Kentucky Doctoral Dissertations. 650. 
https://uknowledge.uky.edu/gradschool_diss/650 

This Dissertation is brought to you for free and open access by the Graduate School at UKnowledge. It has been 
accepted for inclusion in University of Kentucky Doctoral Dissertations by an authorized administrator of 
UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu. 

http://uknowledge.uky.edu/
http://uknowledge.uky.edu/
https://uknowledge.uky.edu/
https://uknowledge.uky.edu/gradschool_diss
https://uknowledge.uky.edu/gradschool
https://uky.az1.qualtrics.com/jfe/form/SV_9mq8fx2GnONRfz7
mailto:UKnowledge@lsv.uky.edu


www.manaraa.com

ABSTRACT OF DISSERTATION

Eun-Joo Lee

The Graduate ShoolUniversity of Kentuky2008



www.manaraa.com

Aurate and Robust Preonditioning Tehniquesfor Solving General Sparse Linear Systems
ABSTRACT OF DISSERTATIONA dissertation submitted in partialful�llment of the requirements forthe degree of Dotor of Philosophyin the College of Engineering at theUniversity of KentukyByEun-Joo LeeLexington, KentukyDiretor: Dr. Jun Zhang, Professor of Computer SieneLexington, Kentuky 2008
Copyright  Eun-Joo Lee 2008



www.manaraa.com

ABSTRACT OF DISSERTATION
Aurate and Robust Preonditioning Tehniquesfor Solving General Sparse Linear SystemsPreonditioned Krylov subspae methods are generally regarded as one lass of themost promising tehniques for solving very large and sparse linear systems, but thesemethods may produe instability and/or inauray problems for ertain matries.Inauray problems are usually aused by the diÆulty in determining parametersor threshold values in onstruting preonditioners for some partiular matries. Inaddition, small or zero pivots in inde�nite matries may yield preonditioners thatare unstable and inaurate. The purpose of this study is mainly onerned withimproving stability and auray of preonditioners.Firstly, for the purpose of improving the auray of inomplete lower-upper (ILU)fatorization, two preonditioning auray enhanement strategies were proposed.The strategies employ the elements that are dropped during ILU fatorization andutilize them in di�erent ways with separate algorithms. The �rst strategy (errorompensation) applies the dropped elements to the lower and upper parts of theLU fatorization to ompute a new error ompensated LU fatorization. The otherstrategy (inner-outer iteration), whih is a variant of the ILU fatorization, embedsthe dropped elements in the preonditioning iteration proess.Seondly, in order to inrease the auray and stability of preonditioners insolving inde�nite matries, hybrid reordering and two-phase preonditioning strate-gies based on inomplete LU (ILU) fatorization and a sparse approximate inverse(SAI) preonditioner, respetively are onsidered. These strategies attempt to replaethe small or zero pivots with large values, ensuring that the resulting preonditionersare better onditioned. Spei�ally, the hybrid reordering strategies eÆiently searhfor the entries of single element and/or the maximum absolute value to plae the ele-ments on the main diagonal of the original matrix, and the two-phase preonditioningstrategy adopts the idea of a shifting method that adds a value to the diagonals ofan inde�nite matrix. The two-phase preonditioning strategy produes an inverseapproximation of the shifted matrix by onstruting a SAI preonditioner in eahphase. The two inverse approximation matries produed from eah phase are thenombined to be used as a preonditioner.
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Thirdly, with the intention of enhaning the onvergene performane of the pre-onditioned iterative solvers, two sparsity pattern seletion algorithms for a fatoredsparse approximate inverse preonditioner are onsidered. The sparsity pattern isadaptively updated in the onstrution phase of a preonditioner by using ombinedinformation of the inverse and original triangular fators of the original matrix. Inorder to determine the sparsity pattern, the �rst algorithm uses the norm of the in-verse fators multiplied by the largest absolute value of the original fators, and theseond employs the norm of the inverse fators divided by the norm of the originalfators.KEYWORDS: Linear System, Preonditioning, Inomplete LU (ILU) Fatorization,Inde�nite Matries, Sparse Approximate Inverse (SAI) Preonditioner
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Chapter 1 Introdution
Many omputational siene and engineering problems an be formulated in the formof partial di�erential equations (PDEs). The typial way to solve suh equations isto disretize them, hanging a ontinuous problem into a disrete problem. Thesedisretizations generally result in linear systems with large and sparse oeÆientmatries, whih have to be solved eÆiently.For solving a linear system of the form:Ax = b; (1.1)either diret or iterative methods an be used. Here, A is a real (or omplex) valuedsparse oeÆient matrix of order n; x is an unknown vetor, and b is a known right-hand side vetor. Diret methods, based on the fatorization of the oeÆient matrixA into easily invertible matries, allow exat omputations up to the mahine au-ray. On aount of their robustness, these methods are widely employed in manyindustrial areas where reliability is the primary onern. Diret methods, however,often beome ineÆient for solving large sale problems. Espeially, the problemsarising from the disretization of PDEs in three spae dimensions sometimes lead tolinear systems omprising of hundreds of millions or even billions of equations [8℄.Generally speaking, diret methods are not useful to solve suh large problems be-ause (1) they have a omputational omplexity of O(n3) on an n�n matrix and (2)a large amount of memory ost aused by the �ll-ins, nonzero elements into originalzero element loations, during the Gaussian elimination.Iterative methods should be utilized for solving large-sale problems by reason oftheir omputational eÆieny. These methods generate a sequene of approximatesolutions to the system that (hopefully) onverges to the exat solution. In addition,iterative methods require fewer storage and fewer operations than diret methods in1
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solving problems beause iterative methods avoid some of the osts assoiated with�ll-in in matrix fators. However, iterative methods do not have the same reliabilityof diret methods, and the onvergene of iterative methods is related to the onditionnumber of a oeÆient matrix. This results that iterative methods often fail to attainonvergene in a reasonable amount of time or even diverge in solving ill-onditionedproblems.Preonditioning a matrix is useful to aelerate the onvergene of iterative meth-ods. Preonditioning is a way to transform the original linear system (1.1) intoanother system of the form: M�1Ax = M�1b; (1.2)where M is a nonsingular matrix with the same order of A: Here, the system (1.2)is preonditioned from left, and the matrix M is alled a (left) preonditioner. Thepreonditioned system (1.2) has the same solution of the original linear system (1.1),and M�1A generally attempts to provide a smaller ondition number than A:It has been widely notied that preonditioning is the most ruial part in the de-velopment of eÆient solvers for hallenging problems in sienti� omputation [8, 57℄.Moreover, the importane of preonditioning has been more weighted as the size of theproblems to be solved has beome larger and larger. As a result, researh in matrixpreonditioning has reeived more attention than both diret methods and iterativemethods in past few years, and lots of e�orts have been made in developing e�etivepreonditioners. This dissertation mainly fouses on preonditioning tehniques toimprove the performane and reliability of iterative methods in solving general sparsematries.1.1 MotivationPreonditioned Krylov subspae methods, whih are based on projetion proessesand are one of the most important iterative methods for solving large linear systems,2
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are generally regarded as one lass of the most promising tehniques [9, 17, 19, 41℄for solving very large and sparse linear systems. In general, inomplete lower-upper(ILU) and sparse approximate inverse (SAI) preonditioning tehniques have beenwidely used and have been suessful in solving many large and sparse matries.Suh tehniques, however, may ommonly enounter two major issues. Firstly, theirauray is often insuÆient to yield an adequate rate of onvergene due to the diÆ-ulty in determining parameters or threshold values in onstruting preonditioners.In addition, they may onfront diÆulty when a matrix to be solved is inde�nite,that is, when the matrix has both positive and negative eigenvalues. This is beausesmall or zero pivots in inde�nite matries may produe unstable and inaurate pre-onditioners.In response to these issues assoiated with preonditioning tehniques, we haveonerned ourselves with improving auray and stability of a preonditioner insolving large and sparse matries.InsuÆient Auray of Inomplete LU (ILU) FatorizationThe onvergene of iterative methods an be aelerated by using inomplete LU(ILU) preonditioners assoiated with an ILU fatorization. ILU preonditionersusually perform quite well in solving symmetri and asymmetri matries. Most ILUpreonditioners, however, have a ommon issue that the auray of ILU fatorizationmay be insuÆient to yield an adequate rate of onvergene beause of the droppedelements during the fatorization.In general, more aurate ILU fatorizations are often more eÆient as well asmore reliable [54, 55℄. In this way, we onsider two strategies to improve the aurayof some ILU preonditioners. ILU(0) (inomplete LU fatorization with zero �ll-in) isone of the simplest ways to de�ne a preonditioner having the form of an inomplete
3
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LU fatorization A = LU + E; (1.3)where the L and U matries have the same nonzero strutures as those of the lowerand upper triangular parts of A; respetively, and E is the error or residual matrixof the fatorization. Aording to Saad [55℄, the elements of the error matrix Eare exatly those that are dropped during the ILU fatorization. In standard ILUfatorizations, the dropped elements are disarded. In order to improve the aurayof the omputed ILU(0) preonditioner, we ollet the dropped elements during theILU fatorization proess by paying little omputation and some storage spae thatan be ignorable in modern omputing environments.ILU(0) preonditioning is rather easy to implement and omputationally inex-pensive ompared to other ILU preonditioners, but it may require many iterationsto onverge due to its oarse approximation of the original matrix A [54, 55℄. Ithas been notied that ILU fatorization generally yield more aurate fatorizationsthan ILU(0) when numerial dropping strategies are adopted in the proesses of ILUfatorization. The reason is that the dropping strategies try to minimize E in Equa-tion (1.3) in some sense [19℄.Aordingly, ILUT (a dual threshold inomplete LU fatorization) [54℄ an beonsidered as an alternative of ILU(0). ILUT approah relies on numerial values fordropping elements, and it has a limit on the number of allowed �ll-in elements. Also,this approah develops ILU fatorization preonditioners with improved auray ifthe dropping tolerane and the �ll-in parameters are hosen properly. On the otherhand, ILUT with large dropping tolerane and small �ll-in does not onstitute areliable approah, and generally it gives low auray ILU fatorizations [54, 55℄.In response to the auray issue assoiated with ILU fatorizations, we onsiderthe fat that the size of the error matrix E diretly a�ets the onvergene rate of thepreonditioned iterative methods [32℄. Furthermore, the quality of a preonditioning4
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step is diretly related to the size of both (LU)�1 and E, that is, a high qualitypreonditioner must have an error matrix that is small in size [68℄. The new preon-ditioning auray enhanement strategies proposed in Chapter 3 were inspired bysrutinizing these fats and exploiting the error values dropped in the fatorizationto improve the auray of the inomplete LU fatorizations.The main idea of the error ompensation strategy is to use the error matrixbefore starting the preonditioned iteration proess. After aquiring the LU fator-ization with a preonditioner, we add the error matrix E to the L and U matriesto obtain an error ompensated fatorization eLeU . The auray of using eLeU is in-reased signi�antly in some ases, ompared with that of using LU diretly, suhthat jj eE(= A� eLeU)jj < jjE(= A� LU)jj.The seond preonditioning enhanement strategy (an inner-outer iteration pro-ess) uses the error matrix during the preonditioned iteration proess. It an beonsidered as a variant of the LU solver with an error embedded LU approah.Limitations of Preonditioning Tehniques for Inde�nite MatriesInde�nite matries, whih have positive and negative eigenvalues, arise frequentlyfrom �nite element disretizations of oupled partial di�erential equations in ompu-tational uid dynamis and other appliations. In solving suh inde�nite matries,however, there are at least two reasons that make preonditioning tehniques diÆult[19℄. The �rst reason an be due to small or zero pivots in an inde�nite matrix thatmay lead to unstable and inaurate fatorizations [44℄. In addition, small pivots areusually related to small or zero entries on the diagonal of the matrix, so the inde�nitematrix with zero diagonal entries may have higher hanes of enountering zero pivotsif the matrix is also nonsymmetri [54, 68℄. Seondly, unstable triangular solutionsan be resulted when jjL�1jj and jjU�1jj are extremely large while the o�-diagonalelements of L and U are reasonably bounded. Suh problems are usually aused by5
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very small pivots, but they may sometimes happen without a small pivot [19, 34, 68℄.As mentioned above that small pivots are often the origin of umbersome toomputing ILU fatorization on an inde�nite matrix, a better performane an beexpeted if small pivots would be replaed with some large values in the matrix.Starting from this idea, we proposed reordering strategies that reorder the rows ofthe matrix to inrease the diagonal dominane rate of the rows.Many researhers [10, 27, 28, 30, 31℄ have foused on permuting large entries ontothe diagonal of inde�nite matrix in the situations of either using diret or iterativesolvers. For example, Du� and Koster [30, 31℄ exploited bipartite mathing algo-rithms and saling tehniques for omputing permutations of a sparse matrix. Theirreordering and saling algorithms are e�etive to the performane of various methodsfor solving sparse matries. In experimental studies using Du� and Koster's [31℄ algo-rithms, Benzi et al. [10℄ onsidered mathing algorithms suh as maximum transver-sal, maximum produt transversal, and the bottlenek transversal with symmetripermutations. However, their preproessing step in mathing is still ompliatedwith several symmetri permutations.In order to solve inde�nite matries eÆiently, we present two diagonal reorder-ing algorithms that are omputationally inexpensive but eÆient in the aspet ofreordering performane for inde�nite matries. To that end, we propose new hybridreordering strategies that are omposed with a ombination of two di�erent diagonalreorderings and a nondereasing degree algorithm presented in Chapter 4.Sparse Aapproximate Inverses and Inde�nite MatriesOf the many types of preonditioners, sparse approximate inverse (SAI) preondi-tioners, of whih the preonditioning proess is just a (sparse) matrix-vetor produtoperation, have reently beome popular in solving many appliation problems dueto their potential employment in parallel implementations [9, 16, 19, 18, 37, 38, 41℄.6
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And for parallelizable preonditioners, several versions of sparse approximate inverse(SAI) tehniques have been developed [13, 16, 20, 21, 37, 41, 69℄ in the past few years.Unlike ILU-type preonditioners, whih need triangular solution proedures at everypreonditioning step, SAI-type preonditioners possess a high degree of parallelismin the preonditioner appliation phase. Thus, SAI-type preonditioners would bean interesting alternative to ILU-type preonditioners [6, 7℄ that an be run on highperformane distributed memory parallel omputers.Sparse inverse preonditioning tehniques may sueed in solving ertain problemswhere the ILU fatorizations are diÆult to handle [18℄. It has been notied thatfatored sparse approximate inverse (FAPINV), whih is a sparse approximate inversethat has a fatored form, tends to perform better in onvergene rate for the sameamount of nonzeros in the preonditioner and also requires less omputational ostthan a non-fatored form does. However, the resulting sparse approximate inversean still break down for solving inde�nite matries due to zero or small pivots [9, 69℄.A shifting strategy, whih adds a value to the diagonals of an inde�nite matrix,an help the resulting preonditioner better onditioned [9, 51, 64℄, but determiningthe value to be added for small pivots is usually ritial to the performane of theresulting preonditioner [44℄. In other words, seleting a large replaing value mayresult in a fatorization that is stable but less aurate. On the other hand, seletinga small replaing value may result in a fatorization that is aurate but unstable.Suh a tradeo� of the shifting strategy has been well studied in [68℄.As part of our ontinuous e�orts on solving inde�nite matries, we propose toadopt the idea of a shifting strategy [51℄ to replae small or zero elements on thediagonal of the original matrix, and to reinfore with a two-phase preonditioningproess to deal with the tradeo� between stability and auray of the resultingpreonditioner in Chapter 5. More spei�ally, the �rst phase of the onstrutionproess employs the shifting strategy to the original matrix so that a shifted matrix7
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an be well onditioned, and then an approximate inverse, M1; of the shifted matrixis obtained by utilizing FAPINV. In the seond phase of the onstrution proess, atemporary matrix, a produt of M1 and the shifted matrix, is onsidered to aquirea better approximate inverse of the original matrix than M1: Applying the shiftingstrategy again to the temporary matrix produes a seond shifted matrix, and FAP-INV omputes a seond approximate inverse matrix,M2; of the seond shifted matrix.Then the resulting sparse approximate inverse, M; has the form ofM = M2M1; whereM1 and M2 are omputed in eah phase.Sparse Approximate Inverses and Sparsity PatternsComputational eÆieny and potential parallelism of sparse approximate inverse(SAI)-type preonditioners leads us to hoose SAI preonditioners as an alternativeto the onventional ILU preonditioners. It has been notied that the performaneof SAI preonditioners depends on their sparsity patterns so that the searh for anoptimal sparsity pattern to onstrut the SAI preonditioners should be taken withextreme are [62, 69℄.In determining the sparsity pattern of SAI, there exists two main lasses of meth-ods alled stati and dynami strategies. A stati sparsity pattern strategy presribesthe sparsity pattern before onstruting a preonditioner, and the pattern remainsunhanged until �nishing the onstrution. Although this lass of sparsity patternseletion strategy is usually eÆient in terms of omputational ost due to the use ofa presribed (�xed) pattern through the onstrution proess, for general sparse ma-tries, the presribed sparsity pattern is often inadequate for robustness [69℄. On theontrary, a dynami sparsity pattern strategy adjusts the pattern using some rules inthe onstrution phase. Suh a strategy usually omputes more aurate and morerobust preonditioners than a stati strategy [62℄. Thus, a dynami sparsity patternstrategy may be used to substitute for a stati sparsity pattern strategy in solving8
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diÆult matries.In reent years, a few dynami pattern strategies [15, 41℄ for SAI preonditionershave been developed. For example, Bollh�ofer [14℄ showed that the norms of the inversetriangular fators have diret inuene on the dropping strategy in omputing a newILU deomposition. Based on this insight, Bollh�ofer [15℄ proposed an algorithm thatmanages the proess of dropped entries with small absolute values by using the rownorm of any row of the inverse fators, but the algorithm has a limitation on solvingsome ill-onditioned problems.In Chapter 6, we introdue two enhaned algorithms, whih extend the algo-rithm [15℄ mentioned above, using ombined information of the norm of the inversefators and either the largest absolute value of the original fators or the norm ofthe original fators. Due to our enhanement strategy, the presented algorithms mayprodue better results in solving ill-onditioned problems.1.2 OrganizationThis dissertation is omposed of seven hapters, notations are introdued as the needarises, and onlusions are given in eah hapter separately. The remainder of thisdissertation is organized as follows:� Chapter 2 provides some bakground on researh areas relevant to the restof the dissertation. Readers with prior knowledge in iterative methods andpreonditioning tehniques may want to skim this hapter.� In Chapter 3, several preonditioning enhanement strategies for improvinginaurate preonditioners generated by the inomplete LU fatorizations ofsparse matries are presented. The strategies employ the elements that aredropped during the inomplete LU fatorization and utilize them in di�erentways with separate algorithms. Experimental results of enhanement strategies9
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are presented to show auray improvement of the inomplete LU fatorizationin ase that the initial fatorizations are found to be inaurate.� In Chapter 4, we present hybrid strategies for inde�nite matries and new diag-onal reorderings that are in onjuntion with a symmetri nondereasing degreealgorithm. With the reordered matries, we have ahieved a onsiderably im-proved stability of inomplete LU fatorizations.� In Chapter 5, a two-phase preonditioning strategy based on FAPINV is pro-posed for solving sparse inde�nite matries. The presented strategy improvesthe auray and the stability of the preonditioner in solving inde�nite sparsematries.� In Chapter 6, we propose two sparsity pattern seletion algorithms for fatoredapproximate inverse preonditioners in solving general sparse matries. Thesparsity pattern is adaptively updated in the onstrution phase by using om-bined information of the inverse and original triangular fators of the originalmatrix.� Chapter 7 summarizes onlusions of this dissertation and outlook for possiblefuture researh diretions.

Copyright  Eun-Joo Lee, 2008.10
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Chapter 2 Bakground
In solving a linear system Ax = b; diret methods or iterative methods an be onsid-ered. Diret methods are usually used in areas where reliability is the primary onernon aount of their delivery of exat solutions. The most widely known diret methodis Gaussian elimination, whih omputes a matrix fatorization,A = LU;where L and U are lower and upper triangular, respetively. In order to solve a linearsystem Ax = b; the omputed fatorization LUx = b an be utilized with forwardelimination (Ly = b) and bakward substitution (Ux = y). Gaussian elimination onan n� n matrix has a omputational omplexity of O(n3) and storage omplexity ofO(n2): However, diret methods beome ineÆient in terms of operation ount andmemory requirement as the size of the linear systems inreased.For solving suh large and sparse linear systems, iterative methods, whih generatea sequene of approximate solutions to the systems, are generally employed due totheir more favorable omputational eÆieny than diret methods. In fat, iterativemethods, when implemented properly, may require less storage and fewer omputingoperations than diret methods (See [55℄ for more details).This hapter is to provide bakground knowledge on researh areas relevant to therest of the dissertation. The most relevant topis are the onvergene rate of iterativemethods and preonditioning tehniques that are disussed in Setion 2.1. Of severaltypes of preonditioners in solving large and sparse linear systems, we introdueinomplete LU (ILU) preonditioner (in Setion 2.2) and sparse approximate inverse(SAI) preonditioner (in Setion 2.3) that will be frequently referred later in thedissertation. 11
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2.1 Preonditioned Iterative MethodsIterative methods are usually employed in solving large and sparse linear systemsbeause of their omputational eÆieny. However, they do not have the reliabilityof diret methods and often fail in some appliations to attain onvergene in areasonable amount of time [8, 55℄. In order to improve the reliability and onvergenerate of iterative methods, preonditioning, whih transforms an original linear systeminto another equivalent system that is easier to solve, is required.The Convergene of Iterative MethodsGenerally speaking, there are two types of iterative methods, stationary iterativemethods and Krylov subspae (nonstationary) methods. Stationary iterative methodsare old-fashioned and simple to drive, implement, and analyze, but usually not ase�etive as Krylov subspae methods. Examples of stationary iterative methodsare the Jaobi method and the Gauss-Seidel method. Krylov subspae methods arerelatively new and an be highly e�etive, but these methods are harder to drive,implement, and analyze. Prototypes of Krylov subspae methods are the onjugategradient method (CG), the generalized minimal residual method (GMRES), and thebionjugate gradient method (BiCG) [5℄.It has been notied that the onvergene rate of iterative methods are stronglyrelated to the distribution of eigenvalues of the oeÆient matrix of a linear systemAx = b [1, 2, 8, 23, 25, 55℄. In this subsetion, we present a general struture and theonvergene rate of iterative methods.Stationary iterative methods de�ne a sequene of iterates of the form:xk+1 = Gxk + f; k = 0; 1; � � � ; (2.1)where G is a ertain iteration matrix, f is a �xed vetor, and x0 is an initial guess.If the iteration onverges, then the limit is the solution of the original system Ax =12
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b [55℄.In order to determine the onvergene rate of iterative methods, we begin withthe de�nition of spetrum and spetral radius.De�nition 2.1.1. The spetrum of a matrix A; denoted by �(A); is the set of alleigenvalues of A: The spetral radius is the maximum size of the eigenvalues of Aand denoted by �(A) = max1�i�k(j�ij);where �1; � � � ; �k are the eigenvalues of A:Theorem 2.1.2 [55℄ shows that the onvergene rate of an iterative method stronglydepends on the spetrum of the oeÆient matrix A:Theorem 2.1.2. Let G be a square nonsingular matrix suh that �(G) < 1: ThenI �G is nonsingular and the iteration (2.1) onverges for any f and x0: Conversely,if the iteration (2.1) onverges for any f and x0; then �(G) < 1:From the results of Theorem 2.1.2, we note that the spetrum value of the iterationmatrix G is less than 1 is a neessary and suÆient ondition for the iteration toonverge.The rate of onvergene of Krylov subspae methods is also strongly related tothe distribution of the eigenvalues of A [8, 36, 55℄. For example, the onvergene rateof the onjugate gradient (CG) method depends on the distribution of the eigenvalueof A; that is, for a symmetri positive de�nite matrix A; if the matrix has a smallerspetral ondition number and/or eigenvalues lustered around 1, the CG methodusually results in a rapid onvergene. This an be seen from the following result [36℄.Theorem 2.1.3. Suppose A 2 Rn�n is symmetri positive de�nite and b 2 Rn: IfCG method produes iterates fxkg and � = �n=�1; where �n and �1 are the largest
13
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and smallest eigenvalues of the matrix A; respetively. Thenjjxk � xjjA � 2jjx� x0jjA(p�� 1p�+ 1)k:Here, the norm jj � jjA is the operator norm with respet to the symmetri positivede�nite matrix A: For two vetors (x; y 2 Rn), the inner produt with respet to Ais de�ned as (x; y)A = yTAx:The operator norm with respet to A is de�ned as jjxjjA =p(x; x)A:In general, Krylov subspae methods often produe rapid onvergene when amatrix A has a lustered spetrum (away from 0) [1, 8, 55℄.Preonditioned IterationsAlthough omputational eÆieny of iterative methods indues their wide usage insolving large and sparse linear systems, they potentially have an issue of slow onver-gene for linear systems that arise from many appliations inluding uid dynamisand eletroni devie simulation [55℄. In these appliations, preonditioning plays animportant role for the suess of iterative methods beause it an improve both theeÆieny and robustness of iterative methods [8, 36, 55℄.Preonditioning transforms an original linear system Ax = b into another sys-tem, whih has the same solution of the original system, with more favorable eigen-spetrum properties for an iterative solver. Generally speaking, preonditioning aimsat improving spetral properties of the oeÆient matrix. The transformed matrix isalled a preonditioned matrix that expetantly will have a smaller spetral onditionnumber and/or eigenvalues lustered around 1 [8℄.There are three ways to apply preonditioning tehniques. If M is a nonsingularmatrix and approximates A; then the linear system of the form:M�1Ax =M�1b (2.2)14
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has same solution as Ax = b: Here, M is a preonditioner; and Equation (2.2) ispreonditioned from the left. Also, the preonditioner an be applied to the right:AM�1u = b; x = M�1u:In addition, split preonditioning of the form:M�1L AM�1R u = b; x =M�1R u;is also possible when the preonditioner is available in the fatored formM = MLMR;where ML and MR are typially triangular matries [55℄.In order for a preonditioner to be eÆient, the onstrution ost of the preondi-tioning matrixM should be low, and the omputation ost of the inverse ofM or thesolution with the matrix M should be inexpensive. That is, a good preonditioner,M; should be easy to solve with and also heap to onstrut and apply [8, 55℄. In thenext two setions, we ontinue disussing two of the most widely used preonditioningtehniques, the inomplete fatorization methods and sparse approximate inverses.The auray and stability of preonditionersThe onditioning of a matrix a�ets the auray of the omputed solution. A matrixis said to be ill-onditioned if a small hange in the data auses a large hange inthe solution, otherwise it is well-onditioned. Ill-onditioning or well- onditioning ofa matrix problem is generally measured by means of a number alled the onditionnumber. The ondition number, �; is� = jjAjjjjA�1jj:If the ondition number of a preonditioner, M�1; is large, omputations withthe matrix M�1 is likely to be inaurate. The reason is that with a large onditionnumber, even a small error in the right-hand side of a linear equation may ause alarge error in the solution of the equation. In that ase, the preonditioned matrix,15
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M�1A; might be worse onditioned than the original matrix A; and also the preon-ditioned GMRES method might need more iterations to onverge or not onverge atall. However, onvergene might happen even if the atual residual norm is still largewhen the initial residual norm is large. Suh onvergene is alled a false onvergene.In order to determine a false onvergene from a true onvergene, we use somestatistial information to estimate ondition numbers of the preonditioned matries.A statisti \ondest", suggested by Chow and Saad [19℄, is utilized to estimate theondition number by alulating jj(LU)�1ejj1; where e is the vetor of all ones. Thisstatistis indiates a relation between the unstable triangular solutions and the poorlyonditioned L and U fators.2.2 Inomplete Fatorization PreonditionersOne of the widely used preonditioners is based on inomplete fatorization of the o-eÆient matrix A: Inompleteness an be generated during the fatorization proess,that is, ertain �ll-in elements, whih are nonzero in the fatorization at positionswhere the original matrix had a zero, have been disarded. This type of preondi-tioner produes a deomposition of the form:A = LU � R;where L and U are lower and upper triangular matries, respetively, and R is theresidual or error of the deomposition. Here, the preonditioner is given in a fatoredform M = LU; and the eÆay of the preonditioner depends on how well M�1approximates A�1:Now, we desribe the ILU(0) fatorization, the simplest form of inomplete LU(ILU) preonditioners and ILUT that is more aurate and the most widely used ILUpreonditioner.
16
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ILU(0)Inomplete LU fatorization takes a set P of the matrix entry positions to be preiselythe nonzero pattern of the matrix A and keeps all positions outside this set equal tozero during the fatorization. The set P is generally hosen to enlose all nonzeropositions of A; and a position is alled a �ll-in position when the position is zero inA but is not zero in an exat fatorization.ILU(0) fatorization is an inomplete LU fatorization with no �ll-in position.That is, ILU(0) fatorization takes a set P = NZ(A) and entails a preonditionerM = LU; where L and U have the same nonzero struture as the lower and upperparts of A; respetively, and NZ(A) is the nonzero positions in A: An example of theILU(0) fatorization for a �ve-point matrix is shown in Figure 2.1 [55℄. The proedureof the ILU(0) fatorization is desribed in Algorithm 2.2.1 [55℄.Algorithm 2.2.1. The ILU(0) algorithm.1. For i = 2; : : : ; n2. For k = 1; : : : ; i� 13. If (i; k) 2 NZ(A); then4. Compute aik = aik=akk5. For j = k + 1; : : : ; n6. If (i; j) 2 NZ(A); then7. Compute aij = aij � aikakjILU(0) fatorization is rather easy to implement and inexpensive to ompute,and it is e�etive for ertain matries from low-order disretizations of salar elliptiPDEs and diagonally dominant matries. On the other hand, ILU(0) fatorizationoften produes a rough approximation to the original matrix. For diÆult problems,the auray of the ILU(0) fatorization may be insuÆient to yield an adequate rate17
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Figure 2.1: The ILU(0) fatorization for a �ve-point matrix with �ve nonzero diago-nals.of onvergene [8, 54, 55℄. In order to obtain better approximation, several alternativeinomplete fatorizations have been developed by allowing more �ll-in in L and U:ILUT: A Dual Threshold ILU FatorizationIn the proess of inomplete fatorization, dropped elements are usually determinedby the struture of the matrix A rather than the numerial values of the matrix.This often derives some diÆulties in solving for realisti problems. In order toremedy this, a few alternative methods are available based on dropping elementsin the Gaussian elimination proess aording to their magnitude instead of their18



www.manaraa.com

loations. With these tehniques, ILUT (Inomplete LU (ILU) fatorization witha dual threshold) fatorization, whih selets the dropped elements dynamially, isone of widely employed alternative methods. This preonditioner utilizes two-stepdropping strategy to ontrol �ll-in during its onstrution phase.The dropping strategy in ILUT works as the follows: (1) The threshold in L andU is set by tol. Any element whose magnitude is less than tol (relative to the absolutevalue of the diagonal element of the urrent row) is dropped. (2) Keeping only thelargest lf il elements in the ith row of L and the largest lf il element in the ith rowof U (exluding the diagonal elements) [54, 55℄. The ILUT algorithm is presented inAlgorithm 2.2.2 [55℄. Note that ai� denotes the ith row of A:Algorithm 2.2.2. The ILUT algorithm.1. For i = 2; : : : ; n2. w = ai�3. For k = 1; : : : ; i� 14. If wk 6= 0; then5. wk = wk=akk6. Apply a dropping rule to wk7. If wk 6= 0; then8. w = w � wk � uk�9. Apply a dropping rule to row w10. For j = 1; : : : ; i� 111. li;j = wj12. For j = i; : : : ; n13. ui;j = wj14. w = 0
19
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ILUT preonditioner has been one of eÆient and robust preonditioners for iter-ative solvers, and the onstrution ost of ILUT is not expensive [55, 70℄. In addition,the ILUT preonditioner is eÆient when the two dropping parameters tol and lf ilare hosen arefully, and the total storage of L and U is bounded by 2n� lf il [55, 70℄.In fat, lf il an be viewed as a parameter that helps ontrol memory usage, while tolhelps redue omputational ost.2.3 Sparse Approximate InversesOf the many types of preonditioners, reently sparse approximate inverse (SAI) pre-onditioners, of whih the preonditioning proess is just a (sparse) matrix-vetorprodut operation, have beome popular in solving many appliation problems dueto their potential in parallel implementations [9, 16, 19, 18, 37, 38, 41℄. Unlike inom-plete LU (ILU)-type preonditioners, whih need triangular solution proedures thatis diÆult to perform on parallel omputers, SAI-type preonditioners possess highdegree of parallelism in the preonditioner appliation phase. Thus, SAI-type preon-ditioners are interesting alternative of ILU-type preonditioners on high performanedistributed memory parallel omputers [6, 7℄.For parallelizable preonditioners, several versions of sparse approximate inverse(SAI) tehniques have been developed [13, 16, 20, 21, 37, 41, 69℄ in the past few years.In general, there an be three ategories to onstrut SAI tehniques; sparse approx-imate inverses based on Frobenius norm minimization [20, 21, 22, 37, 41℄, sparseapproximate inverses omputed from an ILU fatorization [55℄, and fatored sparseapproximate inverses [13, 45℄. Eah of these ategories ontains its own advantagesand limitations in the aspets of onstrution ost, appliation ost, robustness, andeÆieny [12, 20, 37, 59℄.
20
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Sparse Approximate Inverses based on Frobenius Norm MinimizationSparse approximate inverses [20, 21, 22, 37, 41℄ based on Frobenius norm minimizationis the most popular and simple approah for �nding approximate inverses. The basiidea of this approah is to ompute a sparse matrix M � A�1 that minimizes theFrobenius norm of the residual matrix I � AM :F (M) = jjI � AM jj2F ; (2.3)where jj�jjF denotes the Frobenius norm1 of a matrix. The minimization problem (2.3)an be deoupled into the sum of the squares of the 2-norms of the individual olumnsof the residual matrix as: jjI � AM jj2F = nXj=1 jjej � Amjjj22;where ej and mj denote the jth olumns of the identity matrix and of the matrix M;respetively. It follows that the omputation of M is equivalent to minimizing theindividual funtions fj(m) = jjej � Amjjj22;for j = 1; 2; � � � ; n: In other words, eah olumn ofM an be omputed independentlyso that the omputation of M an be arried out in parallel. However, the onstru-tion of the sparse approximate inverses based on norm minimization is sometimesvery expensive, and parallel implementations are neessary for them to be pratiallyuseful [4, 37℄.Sparse Approximate Inverses Computed from an ILU FatorizationAording to Benzi and Tuma [12℄, sparse approximate inverses omputed from anILU fatorization has a two-phase proess, fatorization phase and inverting phase.In other words, an inomplete LU (ILU) fatorization A � ~L ~U is omputed �rstly by1Frobenius norm is de�ned for a matrix A = (aij)n�n as jjAjjF =qPni;j=1 aij2:21
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using standard tehniques, and then inomplete fators ~L and ~U are approximatelyinverted. This approah an produe the omputation of a preonditioner with twophases of inompleteness. As a result, these methods may be diÆult to use inpratie [12, 69℄.Fatored Sparse Approximate InversesIn this subsetion, we disuss fatored sparse approximate inverses based on theinomplete inverse fatorizations of A�1 [12, 69℄. Fatored sparse approximate inversean be onstruted by omputing sparse approximations ~L � L and ~U � U whenA�1 an be fatorized A�1 = LDU; where L is unit lower triangular, D is diagonal,and U is unit upper triangular. The fatored approximate inverse is thenM = ~L ~D ~UT � A�1;where ~D is a nonsingular diagonal matrix, ~D � D: The weakness of this approahis the lak of parallelism in the onstrution phase, but fatored sparse approximateinverses have some advantages over the two approahes previously introdued. Theadvantages are that (1) fatored sparse approximate inverses often result in betteronvergene rates with the same storage requirement, and (2) fatored forms are lessexpensive to ompute [12, 69℄.Several researhers [11, 69℄ onsidered algorithms to improve the parallelism offatored approximate inverses so that one an use the advantages of the fatoredapproximate inverses over the other sparse approximate approahes. Zhang [69℄ pro-posed an fatored inverse algorithm that is derived from a matrix deompositionmethod for inverting nonsymmetri matries. In this dissertation, we utilized thefatored sparse inverses based on an algorithm from [69℄ that possesses greater inher-ent parallelism. The fatored inverse algorithm [69℄ is presented in Algorithm 2.3.1,and the algorithm returns M = LDU � A�1:22
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Algorithm 2.3.1. Fatored Inverse Algorithm for Sparse Matries [69℄.1. For j = n! 1 with step (-1)2. For i = j + 1;! n3. wi = Aji +Pnk=i+1Ajk � Lki4. For i = j + 1;! n5. wi = wi �Dii6. vi = �wi7. For i = j + 1;! n8. For k = i+ 1;! n9. vk = vk � wk � Uik10. For i = j + 1;! n11. Uji = vi12. Djj = 1=(Ajj +Pnk=j+1Ujk � Akj)13. For i = j + 1; n14. w(j)i = Aij +Pnk=i+1 Uik � Akj15. For i = j + 1; n16. wi = wi �Dii17. vi = �wi18. For i = j + 1;! n19. For k = i+ 1;! n20. vk = vk � wk � Lki21. For i = j + 1;! n22. Lij = viNote that L = [L1; L2; � � � ; Ln℄ denotes a lower triangular matrix of order n; Lijrepresents an (i; j) element in L; and Li is a olumn vetor of length n with Lii = 1; i =23



www.manaraa.com

1; 2; � � � ; n: Similarly, U = [U1; U2; � � � ; Un℄ represents an upper triangular matrix oforder n; Uij is an (i; j) element in U; and Ui denotes row vetors of length n withUii = 1; i = 1; 2; � � � ; n: A diagonal matrix is denoted by D = diag[D11; D22; � � � ; Dnn℄.

Copyright  Eun-Joo Lee, 2008.24
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Chapter 3 Inomplete LU Preonditioning Enhanement Strategies
In this hapter, we disuss the inauray problems assoiated with inomplete LU(ILU) fatorization. In order to improve inaurate preonditioners produed by ILUfatorizations, two preonditioning enhanement strategies are presented. The strate-gies employ the elements that are dropped during the ILU fatorization and utilizethem in di�erent ways by separate algorithms. The �rst strategy (error ompensa-tion) applies the dropped elements to the lower and upper triangular parts of theILU fatorization to ompute a new error ompensated LU fatorization. The otherstrategy (inner-outer iteration), whih is a variant of the ILU fatorization, embedsthe dropped elements in its iteration proess.This hapter is organized as follows: In Setion 3.2, preonditioning enhanementstrategies arising from ILU preonditioning and their analyses are presented. Theexperimental results are in Setion 3.3, and the onluding remarks are disussed inSetion 3.4.3.1 IntrodutionInomplete LU (ILU) fatorization, whih is onstruted from the inomplete lower-upper fatorization, is one of the most popularly used preonditioners. However,a ommon problem with suh ILU preonditioners is that their auray may beinsuÆient to yield an adequate rate of onvergene. This problem is usually ausedby the diÆulty in determining even a small number of parameters or thresholdvalues for the ILU fatorizations for some partiular matries. In addition, there stillremains as a tradeo� problem between the fatorization auray and the osts of theomputation and memory assoiated with the fatorization.In the form of an ILU fatorization by inorporating the error or residual matrix,25
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E, we have A = LU + E; (3.1)where L and U are the lower and upper parts of A; respetively. The elements ofthe error matrix E are just disarded in standard ILU fatorizations. It has beenknown that the size of the error matrix E diretly a�ets the onvergene rate of thepreonditioned iterative methods [32, 55℄. Moreover, the quality of a preonditioningstep is diretly related to the size of both (LU)�1 and E, that is, a high qualitypreonditioner must have an error matrix that is small in size [31, 68℄.Based on the understanding of these fats, we propose two new preondition-ing auray enhanement strategies that exploit the error values dropped in thefatorization to improve the auray of ILU fatorizations. This then leads us tothe idea of the error ompensation strategy that utilizes the error matrix beforethe start of the preonditioned iteration proess. After aquiring an ILU fatoriza-tion with a preonditioner, we add the error matrix E to L and U to obtain anerror ompensated fatorization eLeU . The auray of using eLeU is inreased signif-iantly in some ases, ompared with that of using LU diretly, in the sense thatjj eE(= A� eLeU)jj < jjE(= A� LU)jj.The other preonditioning auray enhanement strategy uses the error matrixduring the preonditioned iteration proess. This an be onsidered as a variant of theLU solver with an error embedded LU approah and results in an inner-outer iterationproess. Numerial results of the inner-outer iteration strategies are provided to showthat this algorithm requires fewer outer iterations to onverge. In other words, a fewinner iteration at eah preonditioning step redues the number of outer iterations ofthe preonditioned iterative solver. Note that in order to ollet the elements duringthe ILU fatorization proess, additional omputation ost and some memory spaesare required to keep these elements. This, however, an be negligible as low oststorages beome available. 26
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3.2 Preonditioning Auray Enhanement StrategiesILU fatorizations are made inomplete by dropping arefully hosen nonzero ele-ments to make the fatorizations more eonomial to store, ompute, and solve withit. Eah nonzero element that is dropped ontributes to the \error" in the fatoriza-tion [19℄. In this setion, we assume that ILU fatorizations in question are stable,and propose an error ompensation algorithm and an inner-outer iteration algorithmto improve the auray of the (inaurate) ILU fatorizations.Matrix Error Compensation StrategyWe propose an algorithm to improve the preonditioning auray by reduing thesize of the error matrix E and (LU)�1E in Equation (3.1). By swithing the matrixA and LU , Equation (3.1) an be written as:E = A� LU: (3.2)Then the error matrixE an be separated into two parts, orresponding to the nonzerostrutures of L and U , in the following way:E = El + Eu;where El and Eu are the stritly lower and upper triangular parts of E; respetively.In order to aquire error ompensated eL and eU , the separated error matries, El andEu, are now ombined with the original lower part (L) and upper part (U) of thepreonditioned matrix: eL = L+ El; eU = U + Eu:These new lower triangular part eL and upper triangular part eU are then used as thepreonditioner instead of the original L and U . In other words, eL and eU are usedin the preonditioning steps, i.e., we solve (eLeU)e = r instead of (LU)e = r at eah27



www.manaraa.com

preonditioning step. Here e and r are the error and residual vetors of the urrentapproximate solution. In the experimental results presented in Setion 3.3, we will seethat replaing LU solver with the new eLeU results in a more aurate preonditioner.In many ases, the size of the error matrix with the new eLeU is smaller than that withthe original LU .In order to provide a better piture of the algorithm, an ILU fatorization in whihthe error ompensated L and U improves the auray of the original fatorization isgiven in the following: The ILU(0) fators L and U of a given matrixA = 0BBBB� 2 1 11 2 01 0 2
1CCCCAare L = 0BBBB� 1 0 00:5 1 00:5 0 1

1CCCCA ; U = 0BBBB� 2 1 10 1:5 00 0 1:5
1CCCCA ;from whih we an ompute the error matrix E = A� LU asE = A� LU = 0BBBB� 0 0 00 0 �0:50 �0:5 0

1CCCCA :The error matrix E is then split into two parts, El and Eu. We add El and Eu tothe original inomplete lower and upper triangular parts of A. This results in a newinomplete LU fatorseL = 0BBBB� 1 0 00:5 1 00:5 �0:5 1
1CCCCA ; eU = 0BBBB� 2 1 10 1:5 �0:50 0 1:5

1CCCCA :
28
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From the above A, eL, and eU , we an obtain an new error matrix eE as:eE = A� eLeU = 0BBBB� 0 0 00 0 00 0:25 �0:25
1CCCCA :Table 3.1 presents the omparisons of the sizes of the error matries in the examplegiven above. The sizes of the preonditioned error matrix for the error ompensatedpreonditioner and the original preonditioned matrix are measured in the 2-normand the Frobenius norm. The ase using error ompensated preonditioned matrixredues the error norm by 36% on average. The error ompensation algorithm anTable 3.1: Comparison of the size of preonditioned error matries E and eE.Norm E eE (LU)�1E (eLeU)�1 eE2-norm 0.5 0.3536 0.4082 0.2940Frobenius norm 0.7071 0.3536 0.5270 0.2940have four di�erent implementations. The above desription assumes that both the Land U fators are ompensated. If none of them is ompensated, we have the standardILU preonditioner. If either one of them, but not both fators, is ompensated, wehave two forms of partial error ompensations.An Inner-Outer Iteration ProessIn this subsetion, we desribe an error embedded variant of ILU preonditioningproess to ompensate dropped elements during the ILU fatorization. In solving alinear equation with a standard preonditioned iterative solver, the preonditioningstep is an LU solution proess with an ILU fatorization type preonditioner, i.e., tosolve (LU)e = r for the residual vetor r of the urrent approximate solution and toget an approximate orretion vetor e. For notational onveniene, we denote theurrent approximate solution as ~x. The urrent residual vetor is ~r = b � A~x. Theideal preonditioning step is to solve A~e = ~r and to orret the approximate solution29
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~x to get the exat solution as (~x+ ~e). Sine solving A~e = ~r is as expensive as solvingthe original system Ax = b and is thus impratial in a preonditioning step, we anagain use an iteration proedure to approximately solve A~e = ~r to ahieve a goodpreonditioning e�et. If the error matrix is available, we an split the matrix A asin Equation (3.1), so, for an idealized preonditioning step, we have(LU + E)e = r; (3.3)or LUe + Ee = r: (3.4)As a stationary iteration proess, Equations (3.3) and (3.4) an be rewritten by:LUe(k+1) = r � Ee(k);and e(k+1) = (LU)�1(r � Ee(k)) (3.5)respetively. This iteration proess starts with e(0) = 0, and LUe(1) = r is just thestandard one step ILU preonditioning proedure. Better preonditioning e�et anbe ahieved by performing a few iterations at eah preonditioning step. This willonstitute an inner-outer iteration sheme and is well-known for the preonditionedKrylov method, as eah outer Krylov iteration step is preonditioned by a series ofinner stationary iteration steps.The neessary and suÆient ondition to onverge for the inner iteration proess,given by Equation (3.5), is that the spetral radius of the iteration matrix (LU)�1E issmaller than 1. This is, of ourse, not automatially guaranteed. However, we foundthat the inner iteration proess usually onverges, when the ILU fatorization of theoriginal matrix A is stable and the LU fator is not an extremely poor approximationto the original matrix A. We point out that the inner-outer iteration strategy is nota new one, but here we study it in a systemati way.30
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AnalysisIn order to validate the presented algorithms, the omparison of the size of the errormatries of a �ve-point matrix is given in Table 3.2. A �ve-point matrix (of a �nitedi�erene disretization of a Poisson equation), A, of size n = 400 orrespondingto an nx � ny = 20 � 20 mesh is used. The sizes of the error matrix, E, from theoriginal preonditioner and the new error matrix, eE, from the error ompensatedpreonditioner are measured in the 2-norm and the Frobenius norm. For the aseTable 3.2: Comparison of the size of preonditioned error matries E and eE.Norm E eE (LU)�1E (eLeU)�1 eE (eLU)�1 eE (LeU)�1 eE2-norm 0.5788 0.3582 0.9276 0.8889 0.9109 0.9106Frobenius norm 7.7958 3.2058 3.6129 2.4812 3.1488 3.1447Spetral radius 0.9276 0.8885 0.9098 0.9098using the error ompensated algorithm, the norms (2-norm and Frobenius norm) inolumns 2 and 3 in Table 3.2 show the fat that the norms of the new error matrix aresmaller than the norms of the original error matrix, and also the norms (2-norm andFrobenius) in olumns from 4 to 7 show that all the norms (2-norm and Frobenius)of the orresponding matries in olumns from 5 to 7 are smaller than the norms inolumn 4. In addition to that, from the values in the last row of Table 3.2, we ansee that the inner iteration proess onverges, sine the spetral radii of the (LU)�1Eand (eLeU)�1 eE satisfy the neessary and suÆient ondition for onvergene.3.3 Experimental ResultsWe present numerial results from the experiments by solving sparse matries withour algorithms and some preonditioners. The preonditioned iterative solver weemployed was GMRES(20), with ILU type preonditioners, ILU(0) and ILUT [54℄.For all linear systems, the right-hand side was generated by assuming that the solutionis a vetor of all ones. The initial guess was a zero vetor. We set the iteration to be31
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terminated when the l2-norm of the initial residual is redued by at least seven ordersof magnitude, or when the number of iterations reahes 200. The omputations werearried out in double preision arithmetis on a 64-bit Sun-Blade-100 workstationwith a 500 MHz UltraSPARC III CPU and 1 GB of RAM. The set of sparse matriesTable 3.3: Desription of the test matries.Matrix Desription n nnz ondADD32 Computer omponent design 32-bit adder 4960 23884 2.1E+02BFW398A Bounded Finline Dieletri Waveguide 398 3678 7.6E+03CDDE1 Model 2-D Convetion Di�usion Operatorp1=1, p2=2, p3=30 961 4681 4.1E+03CDDE3 Model 2-D Convetion Di�usion Operatorp1=1, p2=2, p3=80 961 4681 1.0E+04HOR 131 Flow network problem 434 4710 1.3E+05JPWH991 Ciruit physis modeling 991 6027 7.3E+02LOP163 LOPSI Stohasti Test Matrix 163 935 3.4E+07MHD3200B Alfven Spetra in Magneto hydrodynamis 3200 18316 2.0E+13MHD416B Alfven Spetra in Magneto hydrodynamis 416 2312 5.1E+09MHD4800B Alfven Spetra in Magneto hydrodynamis 4800 27520 1.0E+14ORSIRR1 Oil reservoir simulation - generated problems 1030 6858 1.0E+02ORSIRR2 Oil reservoir simulation - generated problems 886 5970 1.7E+05ORSREG1 Oil reservoir simulation - generated problems 2205 14133 1.0E+02PDE225 Partial Di�erential Equation 225 1065 1.0E+02PDE2961 Partial Di�erential Equation 2961 14585 9.5E+02PDE900 Partial Di�erential Equation 900 4380 2.9E+02PORES2 Reservoir modeling Reservoir simulation 1224 9613 3.3E+08PORES3 Reservoir modeling Reservoir simulation 532 3474 6.6E+05SAYLR1 Saylor's petroleum engineering/reservoirsimulation matries 238 1128 1.6E+09SAYLR4 Saylor's petroleum engineering/reservoirsimulation matries 3564 22316 1.0E+02SHERMAN1 Oil reservoir simulation hallenge matries 1000 3750 2.3E+04SHERMAN4 Oil reservoir simulation hallenge matries 1104 3786 7.2E+03SHERMAN5 Oil reservoir simulation hallenge matries 3312 20793 3.9E+05WATT1 Petroleum engineering 1856 11360 5.4E+09that we used for our experiments are from the Harwell-Boeing Sparse Matrix TestColletion [29℄. A brief desription of eah matrix of the experiment set is given inTable 3.3. In the table, the order, the number of nonzero entries, and the onditionnumber of the matrix are denoted by n, nnz, and ond; respetively. All tested32
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matries do not have zero diagonals and the ILU fatorizations are stable.Preonditioning with Error Compensation StrategiesNumerial experiments of testing the error ompensation algorithm with di�erentimplementations are presented. ILU(0) and ILUT preonditioners are used. In ILUT,we hose the dropping tolerane and �ll-in parameter to be 0.1 and 5, respetively,for all test problems.Table 3.4 reports the number of preonditioned GMRES (PGMRES) iterationswith and without di�erent error ompensation strategies. The data in the olumnsmarked \No" are those of the standard preonditioning strategy, i.e., no error om-pensation strategy was used. The olumns marked \Full" indiate that both the Land the U parts were ompensated. Similarly, the olumns marked \Upart" meansthat only the U part was ompensated, and the olumns marked \Lpart" means thatonly the L part was ompensated. The value \-1" in the table indiates the failure ofonvergene within the maximum number (200) of allowed iterations.Table 3.4: Comparison of the number of PGMRES iterations with and without dif-ferent error ompensation strategies.ILU(0) ILUTMatrix No Full Upart Lpart No Full Upart LpartADD32 81 39 40 40 16 15 -1 15BFW398A -1 150 -1 196 -1 -1 -1 -1HOR131 -1 183 -1 -1 -1 -1 -1 -1JPWH991 29 20 24 24 32 21 25 24LOP163 -1 88 98 176 18 19 18 19MHD3200B 5 4 4 4 164 33 76 101MHD416B 4 4 4 4 137 32 63 77MHD4800B 4 3 4 3 148 33 76 107PDE225 30 16 21 22 16 11 15 13PDE2961 -1 91 103 126 85 66 74 77PDE900 61 46 53 55 33 22 30 27SHERMAN1 116 62 76 75 107 87 -1 94SHERMAN4 143 107 124 128 136 101 117 116SHERMAN5 101 73 77 98 -1 145 -1 169WATT1 178 114 115 95 108 85 94 121
33
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Eah olumn of Table 3.4 shows the number of PGMRES iterations. The numberof (preonditioned) iterations, espeially for solving the matries ADD32, BFW398A,HOR131, LOP163, PDE2961, SHERMAN1, SHERMAN5, and WATT1, are greatlyredued with the error ompensation strategies in the ILU(0) preonditioner, om-pared with the standard preonditioner ILU(0). In addition, the number of iterationsfor solving the matries MHD and SHERMAN5 are redued with the error ompen-sation strategies in ILUT, ompared with the standard preonditioner ILUT.
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(a) PDE2961 Matrix with ILU(0) (b) MHD3200B Matrix with ILUTFigure 3.1: The onvergene urves for the PDE2961 and MHD3200B matries.We an see that for most of the test matries, the use of the error ompensationstrategies redues the number of PGMRES iterations. Furthermore, the full errorompensation strategy is shown to be more robust than both the L part and the Upart partial error ompensation strategies. For the two partial error ompensationstrategies, their performane seems to be omparable. In order to provide betterunderstanding of this, we present Figure 3.1 that shows the PGMRES onvergenebehavior for PDE2961 and MHD3200B matries. This represents omparisons of thenumber of PGMRES iterations of PDE2961 and MHD3200B matries with ILU(0)and ILUT, respetively, along with and without the error ompensation strategies.Table 3.5 presents the total CPU proessing time whih inludes the preondi-34
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Table 3.5: Comparison of CPU time in seonds with the di�erent error ompensationstrategies. ILU(0) ILUTMatrix No Full Upart Lpart No Full Upart LpartADD32 1.1E+00 1.0E+00 9.9E-01 9.8E-01 1.2E+00 1.2E+00 N/A 1.1E+00BFW398A N/A 1.9E-01 N/A 1.9E-01 N/A N/A N/A N/AHOR131 N/A 2.1E-01 N/A N/A N/A N/A N/A N/AJPWH991 7.0E-02 8.9E-02 7.9E-02 7.9E-02 1.1E-01 1.5E-01 1.3E-01 1.3E-01LOP163 N/A 2.9E-02 3.9E-02 5.0E-02 6.0E-02 2.9E-02 4.9E-02 5.0E-02MHD3200B 1.8E-01 2.0E-01 2.2E-01 2.1E-01 8.8E-01 4.0E-01 5.9E-01 6.9E-01PDE225 1.9E-02 2.9E-02 1.9E-02 3.9E-02 1.9E-02 2.9E-02 1.9E-02 4.9E-02PDE2961 N/A 5.6E-01 5.8E-01 7.1E-01 1.2E+00 1.4E+00 1.3E+00 1.4E+00SHERMAN1 1.5E-01 1.1E-01 1.1E-01 1.2E-01 2.4E-01 1.9E-01 N/A 2.1E-01WATT1 5.1E-01 4.9E-01 4.3E-01 3.9E-01 7.7E-01 7.7E-01 6.9E-01 7.4E-01tioner onstrution time with di�erent error ompensation strategies. The listedresults in Table 3.5 are onerned with the results listed in Table 3.4. \N/A" in-diates the failure of omputation sine the number of GMRES iteration reahedthe maximum number (200). The total CPU time for solving the matries (ADD32,BFW398A, HOR131, LOP163, MHD3200B, PDE2961, SHERMAN1, and WATT1)is redued by using the error ompensation strategies with ILU(0)/ILUT. This im-plies that as the number of overall iterations are greatly dereased, the CPU time isalso redued even though we need extra proessing time for implementing the errorompensation strategies.Preonditioning with Inner-Outer Iteration StrategiesIn this subsetion, we present numerial experiments of the inner-outer iterationstrategy with di�erent settings of the number of inner iterations. Table 3.6 reports thenumber of preonditioned GMRES (PGMRES) iterations with respet to eah setting.The data in the olumns marked \1-Its" are those of the standard preonditioningstrategy, i.e., no additional iteration beyond the standard preonditioning proedurewas used, whereas eah olumn marked with from \2-Its" to \4-Its" indiates inner35
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iteration steps of 2 to 4, respetively, that are performed at eah preonditioningstep. Also, the value \-1" in the table denotes the failure of onvergene within themaximum number (200) of allowed iterations.Table 3.6: Comparison of the number of PGMRES iterations with di�erent numberof inner iterations. ILU(0) ILUTMatrix 1-Its 2-Its 3-Its 4-Its 1-Its 2-Its 3-Its 4-ItsADD32 81 38 43 27 16 9 7 6BFW398A -1 117 116 50 -1 -1 -1 -1JPWH991 29 15 13 10 32 18 13 11LOP163 -1 110 98 66 18 8 7 5ORSIRR1 41 22 20 16 50 25 30 17PDE225 30 16 10 8 16 8 7 5PDE900 61 31 18 15 33 16 11 9SHERMAN1 116 52 57 32 107 50 47 30SHERMAN4 143 65 46 33 136 60 36 26SHERMAN5 101 54 39 29 -1 87 72 57WATT1 178 66 53 36 108 49 39 31Table 3.6 shows that the inner-outer iteration strategies redue the number ofPGMRES iterations for most of the tested matries. Espeially, ILU(0) with theinner-outer iteration strategies is shown to be e�etive for solving ADD32, BFW398A,LOP163, PDE225, PDE900, SHERMAN, and WATT1 matries. ILUT with di�erentnumber of inner-outer iteration strategies works well on the PDE and SHERMANmatries.Figure 3.2 shows that the number of PGMRES iterations is dereased as the num-ber of inner iterations is inreased for solving the LOP163 and SHERMAN5 matries.In the �gure, \ILU(0)" and \ILUT" denote the standard ILU(0) and ILUT preondi-tioner, respetively. Also, \2-Its," \3-Its," and \4-Its" represent the preonditionerswith inner iteration steps of 2, 3, and 4, respetively.In Table 3.7, we ompare the total CPU proessing time in seonds with andwithout the inner-outer iteration strategies. In general, larger number of inner iter-ations redues the number of outer iterations needed for onvergene. However, theredution of the number of outer iterations does not always lead to the redution of36
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(a) The LOP163 matrix with ILU(0) (b) The SHERMAN5 matrix with ILUTFigure 3.2: The onvergene urves for the LOP163 and SHERMAN5 matries.Table 3.7: Comparison of CPU time in seonds of ILU(0) and ILUT with di�erentnumber of inner iterations. ILU(0) ILUTMatrix 1-Its 2-Its 3-Its 4-Its 1-Its 2-Its 3-Its 4-ItsADD32 1.1E+00 1.1E+00 1.4E+00 1.2E+00 1.2E+00 1.2E+00 1.5E+00 1.3E+00BFW398A N/A 1.7E-01 2.4E-01 1.6E-01 N/A N/A N/A N/AJPWH991 7.0E-02 7.0E-02 8.9E-02 7.0E-02 1.1E-01 1.1E-01 1.3E-01 1.2E-01LOP163 N/A 4.9E-02 5.9E-02 3.9E-02 6.0E-02 4.9E-02 7.0E-02 3.9E-02ORSIRR1 9.0E-02 1.3E-01 1.1E-01 1.2E-01 1.4E-01 1.7E-01 1.7E-01 1.7E-01PDE225 1.9E-02 1.9E-02 1.9E-02 1.9E-02 1.9E-02 2.9E-02 2.9E-02 2.9E-02SHERMAN1 1.5E-01 1.0E-01 1.3E-01 1.2E-01 2.4E-01 1.7E-01 2.1E-01 1.8E-01WATT1 5.1E-01 3.9E-01 3.7E-01 3.6E-01 7.7E-01 5.9E-01 5.9E-01 5.8E-01the total CPU time, as shown in Table 3.7. This is beause that the ost of employ-ing more inner iterations sometimes outweighs the savings obtained in the redutionof the number of outer iterations, as eah outer iteration beomes more expensiveto ondut. For the purpose of maintaining robustness, however, two or three inneriterations may be used in eah outer iteration.
37
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Comprehensive Results: Comparisons between Error Compensation andInner-Outer Iteration StrategiesIn this setion, we show the omparison of the number of PGMRES iterations withdi�erent enhaned preonditioning strategies. The inner-outer iteration strategy isimplemented with two inner iterations in this omparison.Table 3.8: Comparison of the number of PGMRES iterations with and without dif-ferent error ompensation strategies.ILU(0) ILUTMatrix No Full 2-Its Both BothL No Full 2-Its Both BothLBFW398A -1 150 117 81 88 -1 -1 -1 -1 -1CDDE1 -1 102 94 55 77 164 102 66 44 54CDDE3 -1 -1 -1 185 -1 -1 -1 196 198 175ORSIRR1 41 40 22 22 22 50 41 25 22 25ORSIRR2 40 41 22 22 22 51 43 25 24 25ORSREG1 51 50 22 24 25 52 52 26 22 25PDE2961 -1 -1 -1 -1 -1 85 66 51 31 47PDE900 61 46 31 22 27 33 22 16 16 15PORES2 117 148 -1 -1 82 -1 -1 -1 -1 -1PORES3 108 64 52 44 54 121 127 88 53 82SAYLR1 33 33 16 16 15 75 -1 24 31 24SAYLR4 -1 -1 185 163 -1 -1 -1 -1 187 -1SHERMAN1 116 62 52 43 52 107 87 50 51 50SHERMAN4 143 107 65 43 55 136 101 60 43 37SHERMAN5 101 73 54 44 50 -1 145 87 76 79WATT1 178 114 66 40 69 108 85 49 37 49Table 3.8 shows the omparison of the number of PGMRES iterations with dif-ferent enhaned preonditioning strategies. The data in the olumns marked \Both"and \BothL"mean that applying \Full" and \Lpart" followed by \2-Its". The datain the Table 3.8 indiate that most of the proposed strategies are of bene�t to reduethe number of PGMRES iterations, and show that \Both" (the error ompensationstrategy with the L and U parts followed by the inner-outer iteration strategy) hasbest results for almost all tested matries; 12 (8) matries have best results with the\Both," and 3 (2) matries with the \2-Its" (inner-outer iteration strategy), in theontext of ILU(0) (ILUT). Also, \BothL" (the error ompensation strategy with the38
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L part only followed by the inner-outer iteration strategy) is best to 4 (5) matrieswith ILU(0) (ILUT), respetively.Spei�ally, Table 3.8 indiates that most of the proposed strategies are of bene�tto redue the number of PGMRES iterations. In the ontext of ILU(0), 13 matrieshave best results with the inner-outer iteration strategy, and 8 matries with the errorompensation strategies. However, the error ompensation strategy with the L partonly is also best for 4 matries in the sense of the least number of GMRES iterationsonly. In the ontext of ILUT, 13 matries have best results with the inner-outeriteration strategy, and 5 matries with the error ompensation strategy. As a result,the error ompensation strategy followed by the two inner-outer iteration strategyoutperformed the other error ompensation strategies based on this experiment.Table 3.9: Comparison of CPU time in seonds with the di�erent error ompensationstrategies in ILU(0) preonditioning. ILU(0)Matrix No Full 2-Its Both BothLBFW398A N/A 1.9E-01 1.7E-01 1.9E-01 1.6E-01CDDE1 N/A 1.6E-01 2.1E-01 1.5E-01 1.8E-01CDDE3 N/A N/A N/A 3.4E-01 N/AORSIRR1 9.0E-02 1.3E-01 1.3E-01 1.4E-01 1.5E-01ORSIRR2 8.9E-02 1.1E-01 9.9E-02 1.2E-01 1.1E-01ORSREG1 2.6E-01 3.9E-01 2.7E-01 3.3E-01 3.1E-01PDE2961 N/A N/A N/A N/A N/APDE900 9.0E-02 1.0E-01 8.9E-02 9.0E-02 8.9E-02PORES2 2.7E-01 4.5E-01 N/A N/A 3.9E-01PORES3 7.9E-02 7.9E-02 9.0E-02 1.0E-01 1.0E-01SAYLR1 2.9E-02 1.9E-02 1.9E-02 2.9E-02 1.9E-02SAYLR4 N/A N/A 2.1E+00 2.4E+00 N/ASHERMAN1 1.5E-01 1.1E-01 1.0E-01 1.1E-01 1.2E-01SHERMAN4 1.6E-01 1.6E-01 1.3E-01 1.2E-01 1.4E-01SHERMAN5 6.9E-01 7.4E-01 7.3E-01 7.7E-01 7.6E-01WATT1 5.1E-01 4.9E-01 3.9E-01 3.4E-01 4.5E-01Table 3.9 and Table 3.10 present the total CPU proessing time whih inludes thepreonditioner onstrution time with di�erent error ompensation strategies. Thelisted results in Table 3.9 and Table 3.10 are onerned with the results listed inTable 3.8. \N/A" indiates the failure of omputation sine the number of GMRES39
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Table 3.10: Comparison of CPU time in seonds with the di�erent error ompensationstrategies in ILUT preonditioning. ILUTMatrix No Full 2-Its Both BothLBFW398A N/A N/A N/A N/A N/ACDDE1 3.6E-01 2.7E-01 3.2E-02 2.4E-01 2.8E-01CDDE3 N/A N/A 5.9E-01 6.8E-01 6.4E-01ORSIRR1 1.4E-01 1.9E-01 1.7E-01 2.0E-01 2.0E-01ORSIRR2 1.3E-01 1.7E-01 1.4E-01 1.7E-01 1.6E-01ORSREG1 3.9E-01 5.8E-01 3.9E-01 4.7E-01 4.4E-01PDE2961 1.2E+00 1.3E+00 1.4E+00 1.6E+00 1.6E+00PDE900 1.2E-01 1.4E-01 1.3E-01 1.4E-01 1.4E-01PORES2 N/A N/A N/A N/A N/APORES3 1.4E-01 1.6E-01 1.6E-01 1.6E-01 1.8E-01SAYLR1 3.9E-02 N/A 2.9E-02 3.9E-02 2.9E-02SAYLR4 N/A N/A N/A 4.2E+00 N/ASHERMAN1 2.4E-01 1.9E-01 1.7E-01 1.9E-01 1.2E-01SHERMAN4 2.9E-01 2.8E-01 2.2E-01 2.0E-01 2.0E-01SHERMAN5 N/A 1.6E+00 1.3E+00 1.5E+00 1.4E+00WATT1 7.7E-01 7.7E-01 5.9E-01 5.6E-01 6.9E-01iterations reahed the maximum number(200). This implies that as the number ofoverall iterations are greatly dereased, and the CPU time is also redued even thoughwe need extra proessing time for implementing the error ompensation strategies.3.4 Conlusions and RemarksWe proposed preonditioning auray enhanement strategies to augment ILU (in-omplete LU) fatorizations in ase that the initial fatorizations are found to beinaurate. The strategies reompense the dropped elements during the inompletefatorization before/during the preonditioned iteration proesses. Results of ex-tensive numerial experiments demonstrated that the proposed strategies are quitepromising and e�etive in helping redue the number of PGMRES iterations, and anotieable improvement in enhaning the auray of ILU fatorizations. Further-more, the total omputation time for solving sparse linear system was redued inmany ases even though extra proessing time was used for the proposed strategies.
40
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Chapter 4 Hybrid Reordering Strategies
Inomplete LU fatorization preonditioning tehniques often ause preonditionersto be unstable and/or inaurate due to very small pivots enountered during thefatorization in solving inde�nite matries. In this hapter, we onern ourselves withimproving the stability and auray of preonditioners in solving inde�nite matriesusing two diagonal reordering algorithms that replae small pivots with large valueson the main diagonal by searhing for entries of a single nonzero element and/ormaximum absolute value.4.1 IntrodutionInomplete LU (ILU) preonditioning tehniques have been suessful for solvingmany symmetri and nonsymmetri matries, however, they may enounter diÆultywhen the matrix to be solved is inde�nite, i.e., when the matrix has both positiveand negative eigenvalues (See Figure 4.1 for the examples of inde�nite matries). Ifmatrix A has positive and negative eigenvalues, M�1A attempts to move negativeeigenvalues to the positive side and to be lustered around 1. But an unsuessfulpreonditioning may move some of the eigenvalues to be lose to 0, whih ausesM�1A to have a very large ondition number.Aording to Chow and Saad [19℄, there are at least two reasons whih make ILUfatorization approahes diÆult in solving inde�nite matries. The �rst reason anbe due to small or zero pivots in an inde�nite matrix, whih may lead to unstableand inaurate fatorizations [44℄. In addition, small pivots are usually related tosmall or zero entries on the main diagonal of the matrix, so an inde�nite matrixwith zero diagonal entries may have higher hanes of enountering zero pivots ifthe matrix is also nonsymmetri [54, 68℄. Seondly, unstable triangular solutions an42
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(a) MAHINDAS Matrix

(b) SHL 400 MatrixFigure 4.1: The MAHINDAS and SHL 400 matries [50℄.happen when jjL�1jj and jjU�1jj are extremely large while the o�-diagonal elementsof L and U are reasonably bounded. Suh problems are usually aused by very smallpivots [19, 34, 68℄.Sine small pivots are often the origin of stability problems in omputing ILU fa-torization on an inde�nite matrix, we an expet a better performane if small pivotsould be replaed with some large values on the diagonal of the matrix. Based on theidea mentioned above, several researhers [10, 27, 28, 30, 31℄ foused on permutinglarge entries onto the main diagonal of an inde�nite matrix before using diret or43



www.manaraa.com

iterative solvers to solve the matrix. For example, Du� and Koster [30, 31℄ exploitedbipartite mathing algorithms and saling tehniques for omputing permutations ofa sparse matrix. Their reordering and saling algorithms have an e�et on the perfor-mane of various solution methods for solving sparse matries. In the experimentalstudies with the Du� and Koster's [31℄ algorithms, Benzi et al. [10℄ onsidered math-ing algorithms suh as maximum transversal, maximum produt transversal, and thebottlenek transversal with symmetri permutations. Their preproessing step stillrequires ompliated mathing algorithms with several symmetri permutations.As a part of the ontinuous e�orts to develop approahes to replae small pivotswith large values on the main diagonal, we present two diagonal reordering algorithmsthat are omputationally inexpensive but eÆient in the aspet of reordering perfor-mane for inde�nite matries, and also propose new hybrid reordering strategies thatare omposed of a ombination of the two proposed diagonal reorderings and thenondereasing degree algorithm [68℄ desribed in Setion 4.2.The main idea of the diagonal reordering algorithms lies on searhing for entries of(1) single nonzero element and/or (2) the maximum absolute value, to be plaed onthe main diagonal for omputing a nonsymmetri permutation. Single-Element-Reordering desribed in Algorithm 4.2.2 examines the rows and the olumns whihhave only one nonzero element for the permutation so that the main diagonal ofthe permuted matrix has more nonzero entries than the original one. On the otherhand,Maximum-Value-Reordering desribed in Algorithm 4.2.3 searhes for theentries, whih have the maximum absolute value for eah olumn for the permutation,to maximize the absolute value on the diagonal entries for eah olumn.In order to augment the e�etiveness of the nonsymmetri diagonal reorderings,we apply a symmetri nondereasing degree algorithm to redue the amount of �ll-induring the ILU fatorization. This algorithm is used to reorder the rows of the matrixin a dereasing degree fashion; i.e., the rows with smaller degrees are listed �rst and44
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those with larger degrees are listed last [68℄. It will be de�ned later.In Setion 4.3, we present the numerial results to demonstrate the performaneof eah reordering strategy. A set of sparse inde�nite matries were used in the ex-periments. We �rst performed eah reordering strategy as a preproessing step. Inorder to solve the reordered matries, we employed several ILU type preonditionersand a preonditioned iterative solver. The omparison fators derived from solvingthe reordered matries were nonzero entries on the main diagonal, the number ofiterations, the amount of �ll-in in the preonditioners, and a preonditioner ondi-tioning estimate parameter. As a result, we an see that the onvergene ost of thepreonditioned Krylov subspae methods on solving the reordered inde�nite matriesis markedly redued by using our reordering strategies.4.2 Hybrid Reordering StrategyLet A be an inde�nite matrix, and P = f(i; j) j i = j; 1 � i; j � ng be the set ofpairs for a permutation, where n is the order of the matrix A, and (i; j) means tointerhange rows i and j of the matrix A.Algorithm 4.2.1. Verify-Permutation(A; i; k; d).1. r  FALSE2. bk  Count-Nonzeros(A; i; d)3.   Chek-Pair(P; i; d)4. If ( (k = bk) ^ ( = TRUE) )5. r  TRUE6. Return rWe desribe the Verify-Permutation(A; i; k; d) funtion in Algorithm 4.2.1to determine a permutation, where d is the diretion (ROW or COL; i.e., row-wise orolumn-wise), i is the index for the diretion d, and k is the number of nonzero45
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elements to be ompared. In line 2, the Count-Nonzero(A; i; d) funtion ountsthe number of nonzero elements in the i-th of the diretion d (row or olumn). Inline 3, the Chek-Pair(P; i; d) funtion determines whether the pair (i; d) is usedfor the permutation set P . At last, line 4 veri�es whether the given position on thematrix A an be a member of the set P .Single-Element-ReorderingAlgorithm 4.2.2. Single-Element-Reordering.1. For i = 1; :::; n2. If (Verify-Permutation(A, i, 1, ROW) = TRUE )3. j  Find the olumn index of the nonzero element in row i.4. Replae (i; i) with (i; j) in P5. For i = 1; :::; n6. If (Verify-Permutation(A, i, 1, COL) = TRUE)7. j  Find the row index of the nonzero element in olumn i.8. Replae (j; j) with (j; i) in P .Algorithm 4.2.2 desribes the Single-Element-Reordering algorithm that�nds rows and olumns whih have only one nonzero element for the permutation.The main role of this algorithm is to inrease the number of nonzero elements on thediagonal. The number of elements in a row or in a olumn an be omputed veryinexpensively if we use the ompressed sparse row (or olumn) format. Sine bothrows and olumns are needed, the most eÆient implementation needs the matrixto be stored in both formats. We an temporarily use the storage spae alloatedfor the preonditioner to be used in a later phase to store an additional opy ofthe matrix in another format. With the availability of both rows and olumns, theSingle-Element-Reordering algorithm osts O(n) nonnumerial operations. It46
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is omputationally more eÆient than the maximum transversal algorithm [10, 30, 31℄,whih is O(n � q), where q is the number of nonzero entries of the matrix.Maximum-Value-ReorderingAlgorithm 4.2.3. Maximum-Value-Reordering.1. �  02. For i = 1; :::; n3. bk  Count-Nonzeros(A; i; d)4. If (� < bk ) �  bk5. For k = 2; :::; �6. For i = 1; :::; n7. If (Verify-Permutation(A, i, k, COL)=TRUE )8. j  Find the row index of the maximum value element in olumn i.9. Replae (j; j) with (j; i) in P .As desribed in Algorithm 4.2.3, the Maximum-Value-Reordering algorithmsearhes for an element whih has the maximum absolute value in eah olumn fora permutation to plae that entry on the diagonal of eah olumn of the matrix. Inlines 1-4, we �nd the maximum number � of nonzero elements in the olumns. In line8, the algorithm �nds the maximum absolute value in the olumns takes O(n) time.Thus, it is obvious that the time omplexity of Maximum-Value-Reordering isO(n2 � �) = O(n � q), where � is the maximum number of nonzero elements in aolumn.Du� and Koster [30, 31℄, and Benzi et al. [10℄ onsider the maximum produttransversal whih the produt of the absolute value of the entries on the diagonal ismaximized with a omplexity O(n � q � logn). Sine the matries under our onsid-eration are very sparse, � is smaller than logn and n � q. The Maximum-Value-47
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Reordering algorithm is also more eÆient in terms of time omplexity than themaximum produt transversal [10, 31℄.Nondereasing Degree AlgorithmWe denote by deg(vi) the degree of the node (row) vi, whih equals the number ofnonzero elements of the i-th row minus one, i.e., deg(vi) = Nz(Ai)� 1 = Nz(vi)� 1,where Nz(Ai) represents the number of nonzero elements in row i of a matrix A. Tobe more preise, we reorder the nodes in a dereasing degree fashion; i.e., the nodeswith smaller degrees are listed �rst and those with larger degrees are listed last. Thepurpose of the nondereasing degree reordering strategy is to redue the �ll-in duringthe ILU fatorization [67℄.4.3 Experimental ResultsWe present numerial experiments of the reordering strategies in this setion. Thepreonditioned iterative solver, GMRES(20), was employed with several ILU typepreonditioners, ILU(0), MILU(0), ILUT, and ILUTP. For all linear systems, theright-hand side was generated by assuming that the solution is a vetor of all ones.The initial guess was a zero vetor. The iteration was set to terminate when thel2-norm of the initial residual was redued by at least seven orders of magnitude, orwhen the number of iterations reahed 500.Desription of Test MatriesThe test sparse matries for experiments were unsymmetri matries from the Harwell-Boeing sparse matrix test olletion [29℄ and the sparse matrix olletion at the Uni-versity of Florida [24℄. A short desription of the matries is given in Table 4.1.In all tables with numerial results, SER, MVR, and SMR represent Single-Element-Reordering, Maximum-Value-Reordering, and SER followed by48
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Table 4.1: Desription of the test matries.Name DesriptionMAHINDAS Eonomi model of Vitoria, Australia, 1880 dataOLM1000 The OLMstead model represents the ow of a layerof visoelasti uidOLM5000 The OLMstead model represents the ow of a layerof visoelasti uidSHL 0 Simplex method basis matrixSHL 200 Simplex method basis matrixSHL 400 Simplex method basis matrixFPGA DCOP 03 Ciruit simulation matriesFPGA DCOP 07 Ciruit simulation matriesFPGA TRANS 01 Ciruit simulation matriesFPGA TRANS 02 Ciruit simulation matriesINIT ADDER1 Ciruit simulation matriesSHERMANACa Matries from Kai Shen, UCSBSHERMANACd Matries from Kai Shen, UCSBADDER DCOP 15 Ciruit simulation matriesMEG4 Primarily hemial proess simulation matriesMVR algorithm, respetively.Comparisons of Reordering StrategiesThe omparisons of nonzero entries on the diagonal and the number of GMRESiterations with the reordering strategies are presented. For simpliity, n; nnz; org;and nnzD(org) denote the dimension of the matrix, the number of nonzero entriesin the original matrix, the original matrix, and the number of nonzero entries on thediagonal of the original matrix, respetively.Table 4.2 reports that in most ases, the reordering strategies plae more nonzeroentries on the diagonal than those of the original matrix. For example, the matriesSHL 0, SHL 200, and SHL 400 have 5, 6, and 3 nonzero diagonal entries (nnzD) inoriginal matries, and nnzD of the eah matrix was inreased 406, 360, and 353 withSER, and 663, 645, and 641 nonzero with SMR, respetively. For the SHL 0 matrix,all diagonal entries beome nonzero with SMR. We note that nnzD of some matriesare redued with MVR and SMR, but suh losses are seen as minor beause thenumber of GMRES iterations are dereased ompared to those of original matrix. In49
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Table 4.2: Comparison of nonzero entries on diagonal.Name n nnz nnzD(org) nnzD(SER) nnzD(MVR) nnzD(SMR)MAHINDAS 1258 7682 106 519 907 1152OLM1000 1000 3996 1000 1000 352 1000OLM5000 5000 19996 5000 5000 366 5000SHL 0 663 1687 5 406 352 663SHL 200 663 1726 6 360 366 645SHL 400 663 1712 3 353 371 641FPGA TRANS 01 1220 7382 1154 1220 1158 1220FPGA TRANS 02 1220 7382 1154 1220 1158 1220SHERMANACa 3432 25220 3432 3432 3408 3432SHERMANACd 6136 53329 6136 6136 6110 6130ADDER DCOP 15 1813 11246 1801 1813 1786 1797MEG4 5860 46842 5806 5860 5806 5860the ase of \SHERMANACd," the number of nonzero diagonal entries of the matrix isredued from 6136 to 6130 with SMR reordering, but the failure of onvergene resultof the matrix is hanged to onvergene with 83 GMRES iterations (See Table 4.3).Table 4.3: Comparison of the number of iterations.Name � p preond org ND SER-ND MVR-ND SMR-NDMAHINDAS 10�3 15 ILUTP 12(U) 12 12 11 6OLM1000 10�2 5 ILUT -1 -1 -1 -7 19OLM5000 10�2 5 ILUT -1 -1 -1 -7 19SHL 0 ILU(0) -7 -7 -7 -7 7SHL 0 10�4 5 ILUT -3 -3 -1 -7 2SHL 200 10�5 10 ILUT -3 -3 -3 -1 31SHL 400 10�3 10 ILUT -3 -3 -3 -1 53FPGA TRANS 01 ILU(0) -7 -7 105 -7 105FPGA TRANS 02 ILU(0) -7 -7 105 -7 105SHERMANACa 10�3 5 ILUT -3 -3 -3 -1 9SHERMANACd 10�6 15 ILUT -3 -3 -3 -1 83ADDER DCOP 15 ILU(0) -7 -7 299 -7 -7MEG4 ILU(0) -7 -7 7 -7 7In Table 4.3, we present omparison results of the number of preonditioned GM-RES iterations with the reordering strategies. We have tested SER, and SMR fol-lowed by a symmetri nondereasing degree (ND) permutation, denoted \SER-ND"and \SMR-ND," respetively, to redue �ll-in in the preonditioner. The \�" and\p" olumns in Table 4.3 are the two dropping parameters used in the ILUT fa-50
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torization, and the \preond" olumn spei�es the partiular preonditioners. Thevalue \-1" and \-3" indiate the failure of onvergene within the maximum number(500) of allowed iterations and with the breakdown of the GMRES solver, respe-tively, and \-7" indiates that the preonditioner was not onstruted due to zeroson the main diagonal (zero pivot). The symbol \U" denotes failure due to unstablepreonditioning result, whih only happened with the original \MAHINDAS" matrix,and the omputed results are not reliable although the preonditioned solver stoppedat 12 iterations. Overall, SMR seems to be the most robust sine it helped the ILUpreonditioners solve all but one matrix used in the experiments.Table 4.4: Comparison of the number of nonzero entries.Name preond org ND SER-ND SMR SMR-NDMAHINDAS ILUTP 20234 9374 9087 25864 9520OLM1000 ILUT 2000 2000 2000 1997 1997OLM5000 ILUT 9997 9997 9997 9997 9997SHL 0 ILUT 3946 3647 2857 1898 1409SHL 200 ILUT 5839 5707 5399 2568 1970SHL 400 ILUT 5885 5353 5120 2589 1967FPGA DCOP 03 ILUT 9174 4837 4189 8483 4189FPGA DCOP 07 ILUT 9339 4713 4106 8514 4106INIT ADDER1 ILUTP 22679 8841 8833 27586 9110SHERMANACa ILUT 42094 43395 43395 29163 23277SHERMANACd ILUT 191446 165574 362596 231520 84770As shown in Table 4.4, we ompare the number of nonzero entries in the preon-ditioners with SER and SMR followed by the ND algorithm with the same droppingtolerane parameters as listed in Table 4.3. We an see that the nondereasing degreestrategy redues the number of �ll-in entries during the ILUT and ILUTP fatoriza-tions. It is interesting to notie that for the most matries inluding the SHL matriesand the SHERMAN matries, the SMR-ND strategy have the minimum or lose tothe minimum amount of nonzero entries.
51
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Computational AnalysisAording to Greenbaum and Saad [39, 55℄, the onvergene behavior of the Krylovsubspae methods depends on the distribution of the eigenvalues and on the onditionnumber of the oeÆient matrix. Based on these theoretial fats, we analyze thereordering algorithms by presenting some numerial and graphial results.For a given (diagonalizable) matrix A; it an be deomposed as A = X�X�1;where � = diagf�1; �2; � � � ; �ng is the diagonal matrix of the eigenvalues and X is thematrix of the eigenvetors of the matrix A: The ondition number of the eigenvetormatrix X measures the normality of the matrix A; and it an be used to explain theonvergene of the Krylov subspae methods heuristially [39, 55℄.Table 4.5: The largest and smallest eigenvalues and ondition numbers of the MAHIN-DAS matrix.Matrix �largest �smallest ond(X)A -6.68E+00 -2.90E-03 + 9.60E-03i 1.08E+07ILUT(A) 4.16E-01 + 2.47E+03i N/A 6.42E+07SMR-ND followed by ILUT 2.52E+06 1.95E-05 1.09E+06Table 4.5 reports the largest and the smallest eigenvalues in magnitude of theoriginal and the preonditioned matries, and the ondition number of the eigenvetormatries in the MAHINDAS matrix. Under \N/A", we represent that the the smallesteigenvalue was not omputed. As shown in the table and Figure 4.2 (a), the onditionnumber of the eigenvetor matrix of the original matrix is relatively large, and theMAHINDAS matrix is highly inde�nite.The ILUT preonditioner makes the spetrum more spread around the origin andinde�nite than those of the original matrix in real part (See Figure 4.2 (b)). Thismakes the preonditioned matrix have slightly larger ondition number of the eigen-vetor matrix and auses a failed onvergene of the GMRES method on the ILUTpreonditioned matrix. On the other hand, in Figure 4.2 (), the eigenvalues ap-52
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(a) Eigenvalues of the MAHINDAS matrix
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(b) Eigenvalues of the MAHINDAS matrix with ILUT
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() Eigenvalues of the MAHINDAS matrix with SMR-ND followed by ILUTFigure 4.2: Plots of the eigenvalues of the MAHINDAS matrix. (These sub�guresare in di�erent sale.)plied by the SMR-ND reordering followed by the ILUT preonditioner are shifted tothe right-hand side of the origin in real part (positive de�nite). Also, the onditionnumber of the eigenvetor matrix is dereased. These explain the good onvergenebehavior of the GMRES method on this reordering followed by the ILUT preondi-53
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tioned matrix.Next, we use some statistial information to estimate ondition numbers of thepreonditioned matries. In order to estimate the ondition number, a statisti \on-dest", suggested by Chow and Saad [19℄, is utilized by alulating jj(LU)�1ejj1; wheree is the vetor of all ones. This statistis indiates a relation between the unstabletriangular solutions and the poorly onditioned L and U fators.Table 4.6: Comparison with ondest.Name preond org ND SER-ND SMR SMR-NDMAHINDAS ILUTP Unstable 4:30E + 3 1:61E + 5 1:03E + 6 5:54E + 5OLM1000 ILUT 1:15E + 2 1:12E + 2 1:15E + 2 1:88 1:98OLM5000 ILUT 1:01E + 3 1:01E + 3 1:0E + 3 1:79 1:81SHL 0 ILU(0) N/A N/A N/A 4:71E + 3 4:51E + 3SHL 0 ILUT In�nity In�nity Unstable 5:44E + 3 5:44E + 3SHL 200 ILUT In�nity 1:00 Unstable 3:21E + 13 9:73E + 10SHL 400 ILUT In�nity In�nity Unstable 3:65E + 11 7:19E + 14FPGA DCOP 03 ILUT 1:49E + 12 1:50E + 12 1:50E + 12 1:50E + 12 1:50E + 12FPGA DCOP 07 ILUT 1:50E + 12 1:50E + 12 1:50E + 12 1:50E + 12 1:50E + 12FPGA TRANS 01 ILU(0) N/A N/A 1:92E + 1 4:89E + 2 1:92E + 1FPGA TRANS 02 ILU(0) N/A N/A 1:92E + 1 5:28E + 2 1:92E + 1INIT ADDER1 ILUTP 7:62E + 8 1:23E + 8 1:23E + 8 1:50E + 8 1:23E + 8SHERMANACa ILUT Unstable In�nity In�nity 2:07E + 4 2:07E + 4SHERMANACd ILUT 2:83E + 3 2:83E + 3 2:83E + 3 3:29E + 19 4:67E + 11ADDER DCOP 15 ILU(0) N/A N/A 5:00E + 11 N/A N/AMEG4 ILU(0) N/A N/A 1:97E + 5 1:97E + 5 1:97E + 5The results are listed in Table 4.6, whih are onerned with the results listedin Table 4.3. Under \N/A", we report that the preonditioner was not de�ned, dueto zeros on the diagonal (zero pivot). Also, \In�nity" and \Unstable" represent theunstable triangular solvers. Here, we use \Unstable" if ondest > 1015: The statistisof the \ondest" shows that many matries greatly bene�t from the proposed SMRalgorithm in this paper.
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4.4 Conluding RemarksWe have proposed hybrid reordering strategies for an inde�nite matrix A in ILUpreonditioning tehniques. The strategies are ombinations of the diagonal reorder-ings to onstrut stable preonditioner and nondereasing degree reordering to redue�ll-in numbers. The diagonal reorderings were used to make a matrix inrease thenumber of the nonzero elements on the diagonal and/or maximize the absolute valueon the diagonal entries. It is also worth mentioning that the strategies run eÆientlyin low omputational time ost. For the performane aspet, we showed various ex-perimental results from the proposed reordering strategies. The results demonstratedwere quite promising and e�etive in helping onstrut ILU type preonditioners forsolving inde�nite sparse matries. In addition to that, the onvergene ost of thepreonditioned Krylov subspae methods on solving the reordered inde�nite matrieswas greatly dereased.

Copyright  Eun-Joo Lee, 2008.55
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Chapter 5 A Two-Phase Preonditioning Strategy
In this hapter, as a part of the ontinuous e�ort on solving inde�nite matries, atwo-phase preonditioning strategy based on a fatored sparse approximate inverse isproposed. This strategy adopted the idea of a shifting method, whih adds a numberto the diagonals of an inde�nite matrix, to make the resulting preonditioner wellonditioned. Moreover, the two-phase preonditioning proess reinfores the tradeo�between stability and auray of the resulting preonditioner obtained from theshifting method.5.1 IntrodutionIn reent years, a few preonditioning tehniques in the form of sparse approximateinverse have been developed [9, 16, 18, 20, 37, 38, 41℄. Suh tehniques have someadvantages over the onventional ILU fatorizations. Spei�ally, the proess of ap-plying the sparse approximate inverse preonditioning tehniques an be performedby the matrix-vetor operations, in whih the operations are relatively easier to paral-lelize than the triangular solutions assoiated with the ILU fatorizations. The sparseinverse preonditioning tehniques may sueed in solving ertain problems where theILU fatorizations are diÆult to handle [20℄. In addition to that, fatored sparseapproximate inverse (FAPINV) in whih a sparse approximate inverse has a fatoredform, tends to perform better in onvergene rate for the same amount of nonzerosand also requires less omputational ost than a non-fatored form does. However, theresulting approximate inverse ould still break down for solving inde�nite matriesdue to zero or small pivots [9, 69℄.In solving inde�nite matries, small pivots are also often the origin of stabilityproblems in omputing SAI preonditioners. Therefore, several researhers have fo-56
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used on designing methods that replae the small pivots of inde�nite matries withsome large values. In [8, 51, 64℄, a shifting strategy that adds a value to the diagonalsof an inde�nite matrix is proposed to make the resulting preonditioner better on-ditioned. It has been notied that determining the value to be added for small pivotsis usually ritial to the performane of the resulting preonditioner [44℄. In otherwords, seleting a large replaing value may result in a fatorization that is stablebut less aurate. On the other hand, seleting a small replaing value may result ina fatorization that is aurate but unstable. Suh a tradeo� of the shifting strategyhas been well studied in [68℄.We propose to adopt the idea of a shifting strategy [51℄ to replae small or zero el-ements on the main diagonal of the original matrix, and to reinfore with a two-phasepreonditioning proess to deal with the tradeo� between stability and auray ofthe resulting preonditioner. More spei�ally, the �rst phase of the proess employsthe shifting strategy to the original matrix so that a shifted matrix an be well on-ditioned, and then an approximate inverse, M1; of the shifted matrix is obtained byutilizing FAPINV. In the seond phase of the proess, a temporary matrix whih is aprodut of M1 and the shifted matrix, is onsidered to aquire a better approximateinverse of the original matrix than M1: Applying the shifting strategy again to thetemporary matrix produes a seond shifted matrix, and FAPINV omputes a seondinverse approximation, M2; of the seond shifted matrix. The resulting sparse ap-proximate inverse, M; has the form of M =M2M1; where M1 and M2 are omputedin eah phase, respetively.This hapter is organized as follows. In Setion 5.2, a funtion for determiningthe shifting parameter �; and a two-phase preonditioning of shifted matries foromputing sparse approximate inverses are proposed. In Setion 5.3, numerial re-sults are presented to demonstrate advantages and preonditioning performane ofthe proposed preonditioner over the standard FAPINV preonditioner. Conluding57
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remarks are in Setion 5.4.5.2 Stabilized FAPINV (SFAPINV) PreonditionerWe now introdue the stabilized fatored approximate inverse (SFAPINV) algorithmfor solving inde�nite matries. The SFAPINV preonditioner is omputed in a two-phase preonditioning of two shifted matries. Eah phase generates an approxima-tion of the inverse of a shifted matrix. These two approximations have fatored formsof M1 = L1D1U1 � A1�1 and M2 = L2D2U2 � A2�1; where Li is a lower triangu-lar matrix, Di is a diagonal matrix, and Ui is an upper triangular matrix, i = 1; 2.Finally, the resulting preonditioner beomes a form of M = (L2D2U2)(L1D1U1):Determining the Shifting ParameterInde�nite matries usually have many small or zero pivots that an be the reason ofbreakdown in onstruting sparse approximate inverse as well as ILU-type preon-ditioners. In order to prevent the resulting sparse approximate inverse from beingunstable, we employ a shifting strategy whih fators a shifted matrix A0 = A+ �I;where � is a salar so that A+�I is well onditioned (e.g., diagonally dominant). Aswas mentioned in the introdution, the hoie of � is signi�ant for good performanefor suh strategies. For example, if a matrix A is ill-onditioned, the inverse of A+�Iould be quite di�erent from A�1 for a large value of � [11, 9, 69℄. Indeed, � should belarge enough to ensure the existene of the sparse approximate inverse fatorization,but also small enough so that A+ �I is lose to A.We present an eÆient algorithm Find-Alpha(A; �) in Algorithm 5.2.1, to deter-mine a proper value for the shifting parameter �; rather than a brute-fore approahwhih is omputationally prohibitive.Algorithm 5.2.1. Find-Alpha(A; �).58
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1. For i = 1; n2. (i) = 03. � = 04. For i = 1; n5. temp = 06. For j = 1; n7. If (j 6= i), then (i) = (i) + jaijj8. else temp = jaiij9. If ((i) � temp), then (i) = temp10.For i = 1; n11. If (� � (i)), then � = (i)12.Return �Note that n refers to the order of the original matrix A; aij denotes a nonzeroelement in row i and olumn j; and (i) represents an aumulator of the o�-diagonalsin row i; where i; j = 1; � � � ; n: The funtion starts with initializing (i) for all rowsand the shifting parameter �: In lines 5{12, (i) is determined by seleting a largervalue between the summation of the absolute value of the o�-diagonals in row i andthe diagonal of row i: In lines 13{16, the shifting value � is deided by hoosing thelargest value among (i)s. At the end, the funtion returns the largest aumulatoras the omputed shifting parameter that will make all rows diagonally dominant.Two-Phase FAPINV Preonditioner (SFAPINV)Given a sparse approximate inverse M1 omputed by using FAPINV to the originalmatrix A; we assume that M1 is ineÆient to solve the preonditioned linear systemM1Ax = M1b: (5.1)
59
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Another sparse approximate inverse M2 for the preonditioned linear system (5.1)ould be onsidered to aquire a loser inverse of A than M1: A produt of the twopreonditioners, M2M1; is utilized as a sparse approximate inverse of A; and M2M1beomes more aurate to the inverse of A than M1 does. In fat, the produt matrixM2M1 may hold more information than a single matrix M an. If M2M1 is notsuessful to solve the preonditioned system, another approximate inverses may beonsidered, and this proedure an be ontinued for a few times to obtain a goodpreonditioner (See [63℄ for details).In the ase that the original matrix is inde�nite, a ombined preonditionerM2M1,omputed diretly from A, however, may be unstable beause of small or zero pivots.Furthermore, the shifting strategy makes the original matrix diagonally dominant,but the inverse of A + �I ould be quite di�erent from A�1 if A is ill-onditioned[11, 9, 69℄. Thus, we ombine the two-phase preonditioning with the shifting strategy,alled Stabilized FAPINV Preonditioner (SFAPINV) in Algorithm 5.2.2, toimprove the auray and stability of the sparse approximate inverse fatorization.Here, FAPINV [69℄ is applied as a loal preonditioner in eah phase.Algorithm 5.2.2. Stabilized FAPINV Preonditioner1. Call Find-Alpha(A; �1)2. Construt a shifted matrix A1 = A+ �1I3. Call FAPINV(A1; �1;M1)4. Compute a temporary matrix W =M1A5. Drop small entries of W with respet to �6. Call Find-Alpha(W;�2)7. Construt a shifted matrix A2 = W + �2I8. Call FAPINV(A2; �2;M2)9. Return M2M1 60
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Note that �1; �2; and � represent di�erent dropping toleranes. The algorithm �rstdetermines the shifting parameter �1 from the Find-Alpha funtion, and onstrutsa shifted matrixA1 whih beomes diagonally dominant. In line 3, FAPINV(A1; �1;M1)applies the FAPINV preonditioner to the matrix A1 with the dropping tolerane �1;and returns an approximate matrixM1 whih has a fatored form ofM1 = L1D1U1 ofthe inverse of A1: Then with the fatored approximate inverse M1; the preonditionedsystem (5.1) an be written as(L1D1U1)Ax = (L1D1U1)b: (5.2)The preonditioned system (5.2), however, may need many iterations to onvergebeause the fatorization L1D1U1 ould be inaurate if the shifting parameter �1 istoo large. For this potential problem in inauray, in line 4, a temporary matrixW = M1A is onsidered to further preondition the system (5.2). In line 5, a droppingthreshold parameter, �; is applied to ontrol the sparsity rate ofW; whereW is usuallydenser than A exept the diagonal entries. By doing this, the diagonal entries of thematrix W are not dropped regardless of their magnitude. In lines 6-8, the shiftingstrategy is re-employed to obtain a more aurate and stabilized preonditioner, andthe seond FAPINV(A2; �2;M2) fatorization omputes an approximation M2 whihhas a fatored form M2 = L2D2U2 of the inverse of A2: In line 9, the algorithmreturns a ombined approximation, M2M1; of the inverse of A: As a result, the �nalpreonditioned system beomes(L2D2U2)(L1D1U1)Ax = (L2D2U2)(L1D1U1)b: (5.3)Now, we point out some important features behind our strategy.� It has been well studied that for a given matrix, �nding a suitable shifting pa-rameter of the existing shifting strategies may be ompliated [64℄. More speif-ially, too small a diagonal shift will not have the desired e�et of stabilization,61
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but too large a diagonal shift will result in an inaurate preonditioner. In thisregard, the Find-Alpha(A; �) funtion provides an expliit and eÆient way indetermining the shifting parameters ompared to a ommonly used brute-foreapproah.� It is easy to see that the resulting preonditioner M2M1 is nonsingular. Thislaim an be justi�ed by the following two fats. The �rst is that M1 andM2 are produed by the FAPINV preonditioner in a fatored form whih isnonsingular as long as eah fator is nonsingular. The seond is that the twofatored sparse approximate inverses are not singular [69℄. The singularity ofeah fator an be guaranteed by making sure that its diagonal is not zero.� In general, the seond shifting parameter �2 requires to be muh smaller thanthe �rst parameter �1: It an be observed that a matrix whih has more zeroson its diagonal needs a larger shifting parameter to stabilize the original matrix.In fat, W = M1A tends to be loser to I; or more diagonally dominant thanA1 does. Here, we propose two possible settings in hoosing the two shiftingparameters �1 and �2: For the ase that a matrix is ill-onditioned and has a lowperentage of zeros on its diagonal, the setting with �1 = Find-Alpha(A; �1)and �2 = Find-Alpha(W;�2) an be a proper hoie. On the other hand, if amatrix has a large number of zeros on the diagonal of the matrix, the settingwith �1 = Find-Alpha(A; �1) and �2 = 0 is reommended.� The resulting preonditioner M2M1 = (L2D2U2)(L1D1U1) an be not only sta-ble but also aurate on solving some highly inde�nite matries. This laim willbe supported by experiments with the two-phase preonditioning onstrutedfrom the two shifted matries. In short, the shifting method �rst enhanesthe stability of the fatorization [51℄, and then the two-phase preonditioningimproves the auray of the preonditioner.62
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5.3 Numerial ExperimentsWe present numerial experiments of the SFAPINV (for stabilized fatored approx-imate inverse) preonditioner on solving inde�nite and unsymmetri matries. Thedesription of the test matries is given in Table 5.1. The test matries1 were solvedas they were, that is, no salings or permutations were applied. The SFAPINV pre-onditioner was used as a right preonditioner for experiments, but it an be used asa left preonditioner as well sine there was not muh di�erene in preonditioninge�et. The preonditioned iterative solver employed was GMRES(50). For all linearsystems, the right-hand side was generated by assuming that the solution is a vetorof all ones. The initial guess was a zero vetor. The iteration was terminated whenthe l2-norm of the initial residual was redued by at least eight orders of magnitude,or when the number of iterations reahed 500. The programs of our approah wereoded in standard Fortran 77 programming language in double preision with 64-bitarithmeti. The omputations were arried out on a Sun-Blade-100 workstation witha 500 MHz UltraSPARC III CPU and 1 GB of RAM.In all tables with numerial results, \iter," \omp," \solu," \ond," \�1;" and\�2" denote the number of GMRES iterations, the CPU time in seonds for om-puting the preonditioner, the CPU time for the solution phase (both GMRES andpreonditioner), the ondest2, the �rst and seond shifting parameters, respetively.\�1;" \�2;" and \� = �1 � �2" are the dropping toleranes. The value \-1" and \-3" indiate the failure of onvergene within the maximum number of the allowediterations (500) and with the GMRES solver breakdown, respetively.1All of these matries are available online from the Matrix Market of the National Institute ofStandards and Tehnology at http://math.mist.gov/matrixMarket.2A statisti, ondest, is introdued by Chow and Saad [19℄ to measure the stability of triangularsolutions.
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Matrix Desription n nnz nnzdiag onditionFIDAP007 Matries generated by the FIDAP Pakage 1633 46570 1633 1.93E+11FIDAP014 Matries generated by the FIDAP Pakage 3251 65747 2351 2.62E+16FIDAP033 Matries generated by the FIDAP Pakage 1733 20315 1733 1.20E+13GRE 512 Simulation of omputer systems 512 1976 296 3.8E+02IMPCOL B Chemial engineering plant models 59 271 17 2.7E+05Cavett's proessNNC1374 Nulear reator models 1374 8588 870 1.0E+02NNC261 Nulear reator models 261 1500 150 1.2E+15NNC666 Nulear reator models 666 4044 410 1.8E+11PSMIGR 2 Inter-ounty migration US Inter-ounty 3140 540022 0 1.0E+02migration 1965-1970RBS480 A Forward Kinematis for the Stewart 480 17088 42 1.3E+05platform of RobotisRBS480 B Forward Kinematis for the Stewart 480 17088 43 1.6E+05platform of RobotisRW136 Markov Chain Transition Matrix 136 479 0 1.4E+05WEST0067 Chemial engineering plant models 67 294 2 3.0E+02Table 5.1: Desription of the test matries ; n, nnz, nnzdiag; and ondition denotesthe order, the number of nonzero entries, the number of nonzero entries on the maindiagonal, and the ondition number of a matrix, respetively.Matrix n nnzdiag ondition DD � row �1 �2FIDAP007 1633 1633 1.93E+11 0.0245 Yes YesFIDAP014 3251 2351 2.62E+16 0.2125 Yes YesFIDAP033 1733 1733 1.20E+13 0.0848 Yes YesGRE 512 512 296 3.8E+02 0.1328 Yes NoIMPCOL B 59 17 2.7E+05 0.1694 Yes NoNNC1374 1374 870 1.0E+02 0. Yes NoNNC261 261 150 1.2E+15 0. Yes NoNNC666 666 410 1.8E+11 0. Yes NoPSMIGR 2 3140 0 1.0E+02 0. Yes NoRBS480 A 480 42 1.3E+05 0. Yes NoRBS480 B 480 43 1.6E+05 0. Yes NoRW136 136 0 1.4E+05 0. Yes NoTable 5.2: The relationship between the matrix properties and the shifting fators.Shifting Parameters and Dropping ToleranesWe present results arisen from di�erent settings of the shifting parameters and thedropping toleranes. In order to obtain a onrete onvergene rate, two di�erentsettings of the shifting parameters are used in onstruting the preonditioner. Note64
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that the �rst and the seond settings are denoted as �1 = Find-Alpha(A; �1) and�2 = Find-Alpha(W;�2); and �1 = Find-Alpha(A; �1) and �2 = 0; respetively.We reommend that �1 and �2 be hosen to improve the stability of the preon-ditioner, but for some matries, �2 be set to zero to enhane the auray. Table 5.2informs a guideline on hoosing the proper setting of the shifting parameters for eahmatrix to ahieve good onvergene. Determining the shifting parameters is relatedwith the statistis of eah matrix, suh as the ondition number, diagonally dominantrow rate (DD-row), and the number of nonzeros on diagonal. Spei�ally, when DD-row of a matrix is zero, the seond setting to the parameters (�2 = 0) ould be hosendue to the need for inreased auray in the seond phase of the preonditioning.As we an see in Table 5.2, for the matries whih have small ondition numbersand a large number of zeros on their diagonals, we selet the seond setting to theparameters (�2 = 0). On the ontrary, when DD-row of a matrix is not zero, the twoparameters with the �rst setting (�2 6= 0) are usually seleted to improve stabilityin the seond phase of the preonditioning. In this ase, the matries usually havelarge ondition numbers. For example, The FIDAP matries, FIDAP007, FIDAP014,and FIDAP033, with the �rst setting have large ondition numbers in the range of[1.93E+11, 2.62E+16℄ and low DD-rate of [0.0245, 0.2125℄.The hoie of the �rst setting is usually aeptable for the FIDAP matries. Ta-bles 5.3 and 5.4 show that the FIDAP matries with the �rst setting inreases theauray of the preonditioning, and as a result of that the number of GMRES it-erations is dereased notieably. The FIDAP014 matrix onverges in around 167iterations with the �rst setting (See ases 1 and 4 in Figure 5.1), but with the seond,it onverges in 436 (460) iterations (See ases 2 and 3 in Figure 5.1). In addition,the preonditioner for solving the FIDAP033 matrix annot onverge in 500 itera-tions with the seond setting while it onverges with the �rst setting. In the seondsetting, the number of GMRES iterations may be related with the seond dropping65



www.manaraa.com

Shifting fators Dropping toleranes Convergene results�1 �2 �1 �2 � omp solu iter ond1.14E+07 5.00E-01 1.0E-01 1.0E-02 1.0E-03 2.30E+00 2.28E+00 167 1.76E-071.14E+07 5.00E-01 1.0E-01 1.0E-03 1.0E-04 2.44E+00 2.53E+00 167 1.76E-071.14E+07 5.00E-01 1.0E-01 1.0E-04 1.0E-05 2.50E+00 2.81E+00 167 1.76E-071.14E+07 5.00E-01 1.0E-02 1.0E-01 1.0E-03 2.32E+00 2.32E+00 180 1.76E-071.14E+07 4.95E-01 1.0E-02 1.0E-02 1.0E-04 3.20E+00 2.34E+00 163 1.78E-071.14E+07 4.95E-01 1.0E-02 1.0E-03 1.0E-05 3.40E+00 2.55E+00 163 1.78E-071.14E+07 4.95E-01 1.0E-03 1.0E-01 1.0E-04 6.10E+00 2.47E+00 169 1.78E-071.14E+07 4.95E-01 1.0E-03 1.0E-02 1.0E-05 6.10E+00 2.50E+00 162 1.78E-071.14E+07 4.95E-01 1.0E-04 1.0E-01 1.0E-05 1.07E+01 2.72E+00 169 1.78E-071.14E+07 0 1.0E-03 1.0E-01 1.0E-04 6.17E+00 7.31E+00 460 8.80E+001.14E+07 0 1.0E-01 1.0E-03 1.0E-04 2.75E+00 9.09E+00 436 8.80E+00Table 5.3: Test results for solving the FIDAP014 matrix with di�erent values of theshifting fators and the dropping parameters.Shifting fators Dropping toleranes Convergene results�1 �2 �1 �2 � omp solu iter ond1.21E+11 6.07E-01 1.0E-01 1.0E-02 1.0E-03 6.69E-01 1.55E+00 289 1.37E-111.21E+11 6.09E-01 1.0E-01 1.0E-03 1.0E-04 7.00E-01 1.87E+00 300 1.37E-111.21E+11 6.10E-01 1.0E-01 1.0E-04 1.0E-05 7.09E-01 1.96E+00 300 1.37E-111.21E+11 0.75E+00 1.0E-02 1.0E-01 1.0E-03 6.59E-01 1.67E+00 320 1.09E-111.21E+11 5.93E-01 1.0E-02 1.0E-03 1.0E-05 6.69E-01 1.60E+00 296 1.49E-111.21E+11 5.94E-01 1.0E-02 1.0E-03 1.0E-05 7.20E+00 1.89E+00 300 1.49E-111.21E+11 5.91E-01 1.0E-03 1.0E-01 1.0E-04 1.57E+00 1.78E+00 288 1.39E-111.21E+11 5.92E-01 1.0E-03 1.0E-02 1.0E-05 1.56E+00 1.89E+00 297 1.50E-111.21E+11 5.92E-01 1.0E-04 1.0E-01 1.0E-05 1.65E+00 1.79E+00 288 1.39E-11Table 5.4: Test results of SFAPINV for solving the FIDAP033 matrix with di�erentvalues of the shifting fators and the dropping parameters.Shifting fators Dropping toleranes Convergene results�1 �2 �1 �2 � omp solu iter ond1.00E+00 0 1.0E-03 1.0E-02 1.0E-05 1.17E+01 3.69E-01 12 2.44E+001.00E+00 0 1.0E-02 1.0E-02 1.0E-04 8.17E+00 3.29E-01 13 1.79E+001.00E+00 0 1.95E-03 1.0E-02 5.35E-03 1.05E+01 4.40E-01 15 4.19E+001.00E+00 0 1.0E-02 1.0E-01 1.0E-03 9.69E+00 7.09E+00 289 1.03E+021.00E+00 0 1.0E-02 1.0E-03 1.0E-05 8.08E+00 3.00E-01 12 1.52E+001.00E+00 0 1.0E-04 1.0E-01 1.0E-05 1.31E+01 1.07E+01 353 3.09E+02Table 5.5: Test results of SFAPINV for solving the GRE 512 matrix with di�erentvalues of the dropping parameters.
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4 in Figure 5.1) while when �2 6= 0:1, the iterations are from 12 to 15 (See ases 1 and2 in Figure 5.1). We found that for the matrix GRE 512, the number of iterationsbeome large when the seond dropping tolerane sets at 0:1.Comparison between SFAPINV and FAPINVThe omparisons of the SFAPINV (for stabilized fatored approximate inverse) pre-onditioner with the FAPINV (for fatored approximate inverse) [69℄ preonditionerare presented in Table 5.6. Under \N/A", we report that the preonditioner was notonstruted, due to zeros on the diagonal (zero pivot). In eah testing, the droppingtoleranes were arefully hosen to keep the memory ost (sparsity ratio) of these twopreonditioners omparable. Table 5.7 is a list of the parameters used in both theSFAPINV and FAPINV preonditioners for the test matries.SFAPINV FAPINVMatrix omp solu iter ond omp solu iter ondFIDAP007 2.56E+00 1.56E+00 153 8.96E-10 1.79E+01 6.78E+01 -1 3.71E+03FIDAP014 6.10E+00 2.50E+00 162 1.78E-07 9.64E+01 3.30E+02 -1 7.17E+09FIDAP033 1.57E+00 1.78E+00 288 1.39E-11 8.09E+00 4.59E+01 -1 6.83E+01GRE 512 1.17E+01 3.69E-01 12 2.44E+00 N/A N/A -3 N/AIMPCOL B 9.99E-03 9.99E-03 27 7.57E+03 N/A N/A -3 N/APSMIGR 2 1.92E+03 1.69E+01 19 1.49E+03 N/A N/A -3 N/ANNC1372 3.61E+00 2.63E+00 46 9.57E+04 3.71E+00 3.02E+01 -1 6.59E+35NNC261 7.00E-02 8.99E-02 44 5.99E+04 5.00E-02 1.05E+00 -1 2.93E+22NNC666 5.60E-01 2.99E-01 20 1.06.E+05 4.39E-01 6.62E+00 -1 1.23E+12RBS480 A 5.41E+00 4.20E-01 22 2.93E+01 N/A N/A -3 N/ARBS480 B 5.40E+00 3.19E-01 16 1.34E+00 4.26E+00 8.09E+00 -1 1.22E+03RW136 1.60E-02 7.99E-03 20 2.24E+10 3.99E-03 1.24E-01 -1 2.69E+15WEST0067 2.99E-02 0.00E+00 5 1.14E+01 N/A N/A -3 N/ATable 5.6: Comparisons of SFAPINV and FAPINV.As shown in Table 5.6, in most ases, the SFAPINV preonditioner performedbetter than the FAPINV preonditioner. The test matries that were not solved bythe FAPINV preonditioner may be diÆult to solve by the ILU preonditioners, suhas ILU(0), ILUT [54℄. The data in the table also demonstrates that the onstrutionost of the preonditioners is quite inexpensive. For the ase of the FIDAP014 matri-68



www.manaraa.com

SFAPINV FAPINVShifting fators Dropping toleranes Dropping toleraneMatrix �1 �2 �1 �2 � �FIDAP007 2.00E+09 5.64E-01 1.0E-03 1.0E-02 1.0E-05 1.0E-03FIDAP014 1.14E+07 4.95E-01 1.0E-03 1.0E-02 1.0E-05 1.0E-03FIDAP033 1.21E+11 5.91E-01 1.0E-03 1.0E-01 1.0E-04 1.0E-03GRE 512 1.00E+00 0 1.0E-03 1.0E-02 1.0E-05 1.0E-03IMPCOL B 1.27E+01 0 1.0E-04 1.0E-01 1.0E-05 1.0E-04NNC1374 3.56E+03 0 1.0E-01 1.0E-04 1.0E-05 1.0E-01NNC261 3.56E+03 0 1.0E-01 1.0E-04 1.0E-05 1.0E-01NNC666 3.56E+03 0 1.0E-01 1.0E-04 1.0E-05 1.0E-01PSMIGR 2 1.00E+00 0 3.18E-04 1.0E-02 2.79E-05 3.18E-04RBS480 A 5.79E+03 0 1.0E-03 1.0E-02 1.0E-05 1.0E-03RBS480 B 6.16E+03 0 1.0E-03 1.0E-02 1.0E-05 1.0E-03RW136 1.57E+00 0 1.0E-03 1.0E-02 1.0E-05 1.0E-03WEST0067 6.14E+00 0 1.0E-03 1.0E-02 1.0E-05 1.0E-03Table 5.7: Parameters used in SFAPINV and FAPINV.es, the onstrution ost of the SFAPINV preonditioner was 16 times heaper thanthat of the FAPINV preonditioner. In eah phase, an sparse matrix (approximation)ould be omputed with low memory ost. As a result, the total omputational ostof these sparse matries beomes heaper ompared with omputing a single sparsematrix with a denser sparsity pattern.We note that the SFAPINV preonditioner does not onverge if the �rst shiftingparameter �1 is set to zero (result is not shown in this paper). Thus, a nonzero valuefor the �rst shifting parameter is neessary for the two-phase preonditioning of theshifting method to ahieve good performane.Computational AnalysisAgain, in order to analyze the onvergene behavior of the Krylov subspae meth-ods, we measure the distribution of the eigenvalues and the ondition number of theeigenvetor matrix and the oeÆient matrix [39, 55℄.As we an see in Table 5.8 and Figure 5.3 (a), the ondition number of the originalmatrix A (FIDAP014) is relatively large, and the eigenvalues of the original matrixare distributed near the origin and far away from zero. The FAPINV preonditioned69
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Table 5.8: The largest and smallest eigenvalues and onditioning information of theFIDAP014 matrix.Matrix �largest �smallest ond(Matrix) ond(X)A 1.27E+07 -8.55E-10 2.16E+16 1.00E+00FAPINV(A) 1.02E+46 -6.37E-12 + 1.87E-11i 1.96E+57 1.36E+21SFAPINV(A) 0.5261 -1.52E-16 3.468E+15 5.81E+03matrix (FAPINV(A)) made the spetrum more spread (See Figure 5.3 (b)), andthe ondition number of the eigenvetor matrix and preonditioned matrix beamelarger than the original matrix. As a result, on the original matrix and the FAPINVpreonditioned matrix, the onvergenes of the GMRES method are failed.It has been known that eigenvalues tightly lustered around a single point (awayfrom the origin) provide fast onvergene, while widely spread eigenvalues, espeiallyaround the origin, ause the onvergene to be very slow [39, 55℄.Unlike the FAPINV preonditioned matrix, the eigenvalues of the SFAPINV pre-onditioned matrix (SFAPINV(A)) beame more lustered as learly shown in Fig-ure 5.3 (). In addition, the largest and the smallest eigenvalue in magnitude of theSFAPINV(A) are 0.5261 and -1.52E-16, and the ondition numbers of the eigenvetormatrix of SFAPINV(A) is dereased. These improvements support a good onver-gene behavior of the GMRES method on the SFAPINV preonditioned matrix.5.4 Conluding RemarksWe proposed an algorithm alled SFAPINV (for stabilized fatored approximate in-verse) for solving highly inde�nite matries. SFAPINV onsists of two preonditioningphases to two shifted matries. Eah phase is a fatorization of a shifted matrix ofthe form A+ �I: The shifting method is employed to prevent unstable fatorizationdue to the small or zero pivots of the original matrix, and the two-phase preondi-tioning is utilized to improve the auray of the preonditioner. FAPINV [69℄ hasbeen utilized as a loal preonditioner in the SFAPINV preonditioning beause of70
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(a) Eigenvalues of the FIDAP014 matrix
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(b) Eigenvalues of the FIDAP matrix with FAPINV
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() Eigenvalues of the FIDAP014 matrix with SFAPINVFigure 5.3: Plots of the eigenvalues of the FIDAP014 matrix. (These sub�gures arein di�erent sale.)its low onstrution ost and robustness.Numerial experiments demonstrate the stability and auray of the SFAPINVpreonditioner. Moreover, for the NNC1372 and FIDAP matries, the onstrutionost of the SFAPINV preonditioner may be heaper than that of a single sparse71
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matrix in the FAPINV preonditioner although the SFAPINV preonditioner is om-posed of two sparse matries, M1 and M2: In fat, the memory ost of eah sparsematrix is small and eah of the sparse approximate inverse matries ould be om-puted heaply. Aording to [63℄, omputing a series of two matries where eahmatrix needs small memory ost may be heaper than that of a matrix that needshigh memory ost. Thus, the SFAPINV preonditioner ould be robust and fast onsolving inde�nite matries.We remark that the onept of the two-phase preonditioning of shifted matriesmay be applied to other preonditioning tehniques. For example, one an onstruta hybrid two-phase preonditioning by using a di�erent preonditioner in eah phase.Also, the presented algorithm an be extended to a parallel version beause FAPINVnaturally possesses of great inherent parallelism.

Copyright  Eun-Joo Lee, 2008.72
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Chapter 6 Fatored Approximate Inverse Preonditioners with DynamiSparsity Patterns
The searh for an optimal sparsity pattern in onstruting sparse approximate inverse(SAI) preonditioners should be taken with extreme are beause the performane ofSAI preonditioners depends on the sparsity pattern [69℄. In this hapter, we presenttwo dynami sparsity pattern seletion algorithms for FAPINV (fatored approximateinverse) preonditioners in solving general sparse matries. The sparsity pattern isadaptively updated in the onstrution phase by using ombined information of theinverse and original triangular fators of the original matrix.6.1 IntrodutionThe omputational eÆieny and potential parallelism of sparse approximate inverse(SAI) leads us to hoose SAI preonditioners as an alternative to the onventionalILU preonditioners. It has been well known that the performane of SAI preon-ditioners depends on their sparsity patterns [63, 69℄. Thus, obtaining an optimalsparsity pattern in onstruting an SAI preonditioner an be the most importantpart. Generally speaking, there exist two main lasses of methods alled stati anddynami strategies in determining the sparsity pattern of SAI. A stati sparsity pat-tern strategy presribes the sparsity pattern before onstruting a preonditioner,and the pattern remains unhanged until �nishing the onstrution. The use of apresribed (�xed) pattern through the onstrution proess assumes that this lass ofsparsity pattern seletion strategy is usually eÆient in terms of omputational ost.But, for general sparse matries, the presribed sparsity pattern is often inadequatefor robustness of SAI [69℄. On the ontrary, a dynami sparsity pattern strategy ad-justs the pattern using some rules in the onstrution phase. Suh a strategy usually73
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omputes more aurate and robust preonditioners than a stati strategy [63℄. Thus,a dynami sparsity pattern strategy may be used to substitute for a stati sparsitypattern strategy in solving diÆult matries.In reent years, a few dynami pattern strategies [15, 41℄ for SAI preonditionershave been developed. For example, Bollh�ofer [14℄ showed that the norms of the inversetriangular fators have diret inuene on the dropping strategy in omputing a newILU deomposition. Based on this insight, Bollh�ofer [15℄ proposed an algorithm thatmanages the proess of dropped entries with small absolute values by using the rownorm of any row of the inverse fators, but the algorithm has a limitation on solvingsome ill-onditioned problems.As a part of our ontinuous e�orts in determining dynami sparsity pattern, weintrodue two enhaned algorithms, whih extend the algorithm [15℄ mentioned above,using ombined information of the norm of the inverse fators and either the largestabsolute value of the original fators or the norm of the original fators. Here, afatored approximate inverse (FAPINV) [69℄, whih is a sparse approximate inversewith a fatored form, is utilized as an SAI.The remainder of this hapter is organized as follows. Setion 6.2 desribes theFAPINV algorithm used to haraterize and justify our algorithms for dynami spar-sity pattern in Setion 6.3. In Setion 6.4, numerial results are presented to demon-strate the performane of the proposed algorithms over a stati pattern based FAP-INV. Conluding remarks are in Setion 6.5.6.2 Fatored Sparse Approximate InversesIn this setion, we �rst review a general framework of a fatored inverse and an inom-plete fatored inverse algorithms, and this framework will be utilized in Setion 6.3to justify our sparsity pattern algorithms.Zhang [69℄ proposed an algorithm of a fatored inverse for sparse matries, based74
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on the Luo's algorithm [47℄, in the form,A�1 = LDU; (6.1)for a nonsingular matrix A of order n; where L = [L1; L2; � � � ; Ln℄ is a lower triangularmatrix of order n; and Li is a olumn vetor of length n with Li;i = 1; i = 1; 2; � � � ; n:Similarly, U = [U1; U2; � � � ; Un℄T is an upper triangular matrix with a row vetor Uiand Ui;i = 1; i = 1; 2; � � � ; n; and D = diag[D1;1; D2;2; � � � ; Dn;n℄ denotes a diagonalmatrix. The fatored inverse algorithm that omputes the inverse matrix, A�1; ofEquation (6.1) is presented in Algorithm 6.2.1.Algorithm 6.2.1. Fatored Inverse Algorithm for Dense Matries [47℄.1. For j = n! 1 with step (-1)2. For i = j + 1; n3. w(j)i = aj;i +Pnk=i+1 aj;k � Lk;i4. For i = j + 1; n5. Uj;i = �w(j)i �Di;i �Pnk=i+1w(j)k �Dk;k � Uk;i6. Dj;j = 1=(aj;j +Pnk=j+1 Uj;k � ak;j)7. For i = j + 1; n8. z(j)i = ai;j +Pnk=i+1 Ui;k � ak;j9. For i = j + 1; n10. Li;j = �z(j)i �Di;i �Pnk=i+1 z(j)k �Dk;k � Li;kNote that n refers to the order of the original matrix A; and aij denotes a nonzeroelement in row i and olumn j; where i; j = 1; � � � ; n: The upper inverse fator Uand the lower inverse fator L are omputed in lines 2{7 and lines 9{14, respetively,and the diagonal inverse is onstruted in line 8. Although Algorithm 6.2.1 is written75
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to ompute the inverse of a dense matrix, it an be easily modi�ed to ompute theinverse of a sparse matrix [69℄.For a sparse matrix, we an see that the L and U matries omputed by Algo-rithm 6.2.1 an be too dense, and the omputational ost might be high [69℄. Thus,an inomplete inverse method that drops elements with small absolute values of theinverse is usually employed to redue the ost and maintain the sparsity of the inversefators. For example, Zhang [69℄ introdued an inomplete FAPINV algorithm thatapplies a stati dropping strategy in two parts (four plaes) of the omputational pro-ess to improve Algorithm 6.2.1. Spei�ally, for a given dropping tolerane � > 0;the onditions jw(j)i j � � and jz(j)i j � � determine the loop involving lines 2{4 and9{11 to be skipped, respetively. After proessing lines 5{7 and 12{14, Uj;i and Li;jare dropped if their absolute values are smaller than or equal to �:De�nition 6.2.1. A matrix A is said to be an M-matrix if it satis�es the followingfour properties:1. ai;i > 0 for i = 1; � � � ; n:2. ai;j � 0 for i 6= j; i; j = 1; � � � ; n:3. A is nonsingular.4. A�1 � 0:Aording to Maijerink and van der Vorst [52℄, a onventional inomplete LUfatorization an be exeuted in an exat fatorization, and the omputed pivots arestritly positive when A is a nonsingular M -matrix. This holds true in FAPINVassoiated with the inverse omputed from Algorithm 6.2.1, and in the following,Proposition 6.2.2 establishes a proof that is similar to Proposition 3.1 in [11℄ whereno breakdown in the inomplete proess ours if A is an M -matrix.
76
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Proposition 6.2.2. Let A be an M-matrix, and A�1 = LDU be an inverse matrixof A obtained by Algorithm 6.2.1, where L;D; and U are lower, diagonal, and upperinverse fators of A; respetively. ThenUj;i � 0; Li;j � 0 and Dj;j > 0 (6.2)for 1 � i; j � n:Proof. We will prove the inequalities in (6.2) by using indution. For j = n; theinequalities are obviously true. In fat,Ln;n = Un;n = 1 and Dn;n = 1=an;n � an;n�1 > 0:Now, the following indutive assumptions are onsidered for j � n � 1 and j + 2 �i � n: Uj+1;i = �w(j+1)i �Di;i � nXk=j+2w(j+1)k �Dk;k � Uk;i � 0; (6.3)Li;j+1 = �z(j+1)i �Di;i � nXk=j+2 z(j+1)k �Dk;k � Li;k � 0; and (6.4)Dj+1;j+1 = 1=(aj+1;j+1 + nXk=j+2Uj+1;k � ak;j+1) > 0: (6.5)From the indutive assumptions (6.3) and (6.4), we get Ui;k � 0 and Lk;i � 0 fori+1 � k � n: Also, aj;i and ai;j are nonpositive sine A is an M -matrix. Hene, w(j)iand z(j)i an be expressed byw(j)i = aj;i + nXk=i+1 aj;k � Lk;i � 0 and z(j)i = ai;j + nXk=i+1Ui;k � ak;j � 0; (6.6)where j + 1 < i < n: Using the updating formula given in Algorithm 6.2.1 forUj;i; Li;j; and Dj;j; we haveUj;i = �w(j)i �Di;i � i�1Xk=j+1w(j)k �Dk;k � Uk;i � 0;77
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Li;j = �z(j)i �Di;i � i�1Xk=j+1 z(j)k �Dk;k � Lk;i � 0;and Dj;j = 1=(aj;j + nXk=j+1Uj;k � ak;j) > 0:Therefore, no omponent of Uj;i and Li;j an beome negative, and Dj;j remains pos-itive.Inompleteness arises from FAPINV due to the dropping of nonzero �ll-ins andauses the algorithm to produe smaller or equal absolute entries than those of theinverse fatorization from Algorithm 6.2.1. In aordane with suh fats and theresult of Proposition 6.2.2, we an see that FAPINV also generates a nonnegativefatored approximate inverse when A is an M -matrix.Proposition 6.2.3. Let A be an M-matrix, and A�1 = LDU be an inverse matrixof A obtained by Algorithm 6.2.1, where L;D; and U are lower, diagonal, and upperinverse fators of A; respetively. If G = ~L ~D ~U is a fatored approximate inverseomputed by FAPINV [69℄, where ~L; ~D; and ~U are lower, diagonal, and upper inversefators, respetively. Then D�1A � G � A�1; (6.7)where DA is the diagonal part of A:Proof. Sine the elements of ~L; and ~U are obtained from L and U by dropping ele-ments if the absolute value of the elements are smaller than a dropping tolerane �;then ~L � L; ~D � D; and ~U � U:Hene, we an easily get G � A�1:From Proposition 6.2.2, we know thatDj;j > 0; aj;j > 0; Uj;k � 0; and ak;j � 0:78
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It follows that 0 < aj;j + nXk=j+1Uj;k � ak;j � ajj:Therefore, Dj;j � 1=aj;j:
As the results of Proposition 6.2.2 and Proposition 6.2.3, we have found that boththe exat fatored inverse omputed by Algorithm 6.2.1 and FAPINV [69℄ onstrutnonnegative inverses when A is an M -matrix.6.3 Dynami Sparsity Pattern based Fatored Approximate Inverse Pre-onditionersWe now introdue two algorithms that determine dynami sparsity patterns for FAP-INV preonditioners on solving general sparse matries. In determining the sparsitypattern, we exploit information of the inverse and original fators by the followingtwo supporting reasons that (1) the entries of FAPINV are omputed by the origi-nal and previously omputed inverse triangular fators [69℄, and (2) the norm of theinverse fator is strongly related with the dropping tolerane of FAPINV [14℄. Fromthat point of view, (1) our �rst algorithm, Norm-Largest-Dynami sparsity patternin Algorithm 6.3.1, omputes FAPINV with the dynami sparsity pattern using thenorm of the inverse fators multiplied by the largest absolute value of the originalfators, and (2) the seond, Norm-Norm-Dynami sparsity pattern Algorithm 6.3.2,employs the norm of the inverse fators divided by the norm of the original fators.Algorithm 6.3.1. FAPINV with Norm-Largest-Dynami sparsity pat-tern.
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1. Find the largest absolute values, LargeL and LargeU ;of the lower and upper parts of A2. For j = n; 1 with step (-1)3. �U(j) = �L(j) = 04. For i = j + 1; n5. Compute Uj;i by using FAPINV [69℄6. If (jUj;ij > �U(j)), then �U(j) = jUj;ij7. �U = �U(j) � LargeU8. If (�U > 1), then � = �=�U9. For i = j + 1; n10. If (jUj;ij < �), then Uj;i = 011. Dj;j = 1=(aj;j +Pnk=j+1 Uj;k � ak;j)12. For i = j + 1; n13. Compute Li;j by using FAPINV [69℄14. If (jLi;jj > �L(j)), then �L(j) = jLi;jj15. �L = �L(j) � LargeL16. If (�L > 1), then � = �=�L17. For i = j + 1; n18. If (jLi;jj < �), then Li;j = 0Note that LargeL and LargeU refer to the largest absolute values of the lower andupper triangular fators of the original matrix, respetively. The �U(j) and �L(j) inlines 6 and 15 denote the largest absolute values of the olumns UTj and Lj; respe-tively. The upper inverse fator U and the lower inverse fator L are omputed inlines 4{12 and lines 14{22, respetively, and the diagonal inverse D is onstruted inline 13. In lines 5 and 15, Uj;i and Li;j an be obtained by using the FAPINV algo-rithm [69℄. In lines 9 and 19, the dropping tolerane � is determined by �U and �L;80



www.manaraa.com

and the value of � is updated for eah j. Finally, in lines 10{12 and 20{22, if theabsolute value of an element is smaller than the tolerane �; the element is thendropped.Algorithm 6.3.2. FAPINV with Norm-Norm-Dynami sparsity pattern.1. For i = 1; n2. U�(i) = the largest absolute value in the row i of the upper triangular fator of A:3. L�(i) = the largest absolute value in the row i of the lower triangular fator of A:5. For j = n; 1 with step (-1)6. �U(j) = �L(j) = 07. For i = j + 1; n8. Compute Uj;i by using FAPINV [69℄9. If (jUj;ij > �U(j)), then �U(j) = jUj;ij11. �U = �U(j)=U�(j)12. If (�U > 1), then � = �=�U13. For i = j + 1; n14. If (Uj;i < �), then Uj;i = 016. Dj;j = 1=(aj;j +Pnk=j+1 Uj;k � ak;j)17. For i = j + 1; n18. Compute Li;j by using FAPINV [69℄19. If (jLi;jj > �L(j)), then �L(j) = jLi;jj21. �L = �L(j)=L�(j)22. If (�L > 1), then � = �=�L23. For i = j + 1; n24. If (Li;j < �), then Li;j = 0As similar to Algorithm 6.3.1, the upper inverse fator U and the lower inverse81
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fator L are omputed in lines 7{15 and lines 17{25, respetively, and the diagonalinverse D is onstruted in line 16.Let G1 and G2 be two FAPINV preonditioners of a matrix A: If a given droppingtolerane of G1 is greater than or equal to that of G2; thenL1i;j � L2i;j; U1j;i � U2j;i; and D1j;j � D2j;j;where G1 = L1D1U1 and G2 = L2D2U2: Also, from Proposition 6.2.3, we know thatG1 and G2 are nonnegative matries if A is an M -matrix. Thus, the following propo-sition is straightforward.Proposition 6.3.1. Let A be an M-matrix and A�1 = LDU be the inverse matrix ofA: If G1 = L1D1U1 is obtained by FAPINV [69℄ with a stati dropping tolerane �1;G2 = L2D2U2 is from Algorithm 6.3.1 or Algorithm 6.3.2 with a dynami droppingtolerane �2; and �1 � �2: ThenD�1A � G1 � G2 � A�1; (6.8)where DA is the diagonal part of A:Proof. Based on the Algorithm 6.3.1 and Algorithm 6.3.2, �2 is determined by �1:Spei�ally, in omputing L and U; �2 = �1=�L and �2 = �1=�U where �L > 1 and�U > 1; respetively. Beause of �1 � �2 and by Proposition 6.2.2,0 � L1i;j � L2i;j; 0 � U1j;i � U2j;i; and 0 < D1j;j � D2j;j:It follows that G1 � G2:As we an see in Proposition 6.3.1, the auray of FAPINV depends on the valueof the dropping tolerane �: This implies that the FAPINV preonditioners with thedynami sparsity patterns beome more aurate than the FAPINV with a statisparsity pattern. We present the omparisons between a stati and dynami patternfor the FAPINV preonditioners in Table 6.4.82
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6.4 Numerial ExperimentsWe present numerial experiments of FAPINV with the proposed seletion strategiesof dynami sparsity patterns on solving a few general sparse matries. The desrip-tions of the test matries are given in Table 6.4. The matries1 were solved as theywere, that is, no salings or permutations were applied.The FAPINV (for fatored approximate inverse) [69℄ preonditioner was used asan approximate inverse right preonditioner in the experiments. The preonditionediterative solver employed was GMRES(50). For all linear systems, the right-handside was generated by assuming that the solution is a vetor of all ones. The initialguess was a zero vetor. The iteration was terminated when the l2-norm of the initialresidual was redued by at least eight orders of magnitude, or when the numberof iterations reahed 500. The programs of our approahes were oded in standardFortran 77 programming language in double preision with 64-bit arithmeti, andthe omputations were arried out on a Sun-Blade-100 workstation with a 500 MHzUltraSPARC III CPU and 1 GB of RAM.In all tables with numerial results, STATIC denotes an FAPINV [69℄ preon-ditioner with a stati sparsity pattern. NLD and NND represent FAPINV preon-ditioners with Norm-Largest-Dynami and Norm-Norm-Dynami sparsity patternsdesribed in Algorithm 6.3.1 and Algorithm 6.3.2, respetively; The \iter" refers tothe number of GMRES iterations, the \time" represents the CPU time in seondsfor omputing the preonditioner and for the solution phase, and \spar" denotes thesparsity ratio that is the ratio of the number of nonzero elements of the preondi-tioner to that of the original matrix; The dropping tolerane \�" is utilized as botha dropping tolerane of STATIC and initial dropping toleranes of NLD and NND;The value \-1" indiates the failure of onvergene within the maximum number of1All of these matries are available on-line from the Matrix Market of the National Institute ofStandards and Tehnology at http://math.mist.gov/matrixMarket.83
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Table 6.1: Desription of the test matries ; n, nnz, nnzdiag; and ondition denotesthe order, the number of nonzero entries, the number of nonzero entries on the maindiagonal, and the ondition number of a matrix, respetively. Under \N/A", wereport that the ondition number was not available from Matrix Market [50℄.Matrix Desription n nnz nnzdiag onditionCAVITY03 Driven Cavity Problems 317 7311 243 3.30E+06CAVITY04 Driven Cavity Problems 317 5923 243 1.40E+07CAVITY06 Driven Cavity Problems 1182 32747 883 N/ACAVITY08 Driven Cavity Problems 1182 32747 883 N/ACAVITY11 Driven Cavity Problems 2597 76367 1923 N/ACAVITY13 Driven Cavity Problems 2597 76367 1923 N/ACAVITY15 Driven Cavity Problems 2597 76367 1923 N/AE05R0300 Driven avity driven avity,5x5 elements, Re= 300 236 5856 162 1.30E+06E05R0400 Driven avity driven avity,5x5 elements, Re= 400 236 5846 162 2.40E+06E05R0500 Driven avity driven avity,30x30 elements, Re=500 9661 306002 6962 1.31E+11FIDAP006 Matries generatedby the FIDAP Pakage 1651 49479 1180 3.45E+21FIDAP020 Matries generatedby the FIDAP Pakage 2203 69579 1603 5.89E+08FIDAP021 Matries generatedby the FIDAP Pakage 656 18962 476 9.10E+08FIDAP025 Matries generatedby the FIDAP Pakage 848 24261 608 7.90E+07FIDAP026 Matries generatedby the FIDAP Pakage 2163 93749 1706 4.66E+18FIDAPM02 Matries generatedby the FIDAP Pakage 537 19145 441 1.40E+05LNS 131 Fluid ow modeling 131 536 112 1.50E+15NNC261 Nulear reator models 261 1500 150 1.20E+15NNC666 Nulear reator models 666 4032 410 1.80E+11allowed iterations (500).Comparison of Preonditioners with Stati and Dynami PatternTable 6.4 shows the omparisons between a stati and dynami sparsity pattern forthe FAPINV preonditioners with two di�erent settings of the dropping tolerane,� = 0:1 and � = 0:01: 84
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Table 6.2: Comparisons of the number of preonditioned GMRES iterations withdi�erent sparsity pattern based FAPINV preonditioners.� = 0:1 � = 0:01STATIC NLD NND STATIC NLD NNDMatrix iter iter iter iter spar iter spar iter sparCAVITY03 -1 37 41 -1 8.32 19 9.16 36 8.95CAVITY04 -1 25 22 -1 6.19 10 7.35 23 8.35CAVITY06 -1 -1 22 -1 7.07 -1 15.55 15 30.96CAVITY08 -1 -1 40 -1 18.02 46 25.71 22 31.48CAVITY11 -1 -1 31 -1 9.10 -1 25.49 22 65.57CAVITY13 -1 -1 58 -1 21.57 -1 43.55 33 65.63CAVITY15 -1 -1 92 -1 44.40 -1 52.39 40 67.95E05R0300 -1 -1 33 197 5.26 28 7.19 20 8.22E05R0400 -1 -1 46 -1 6.37 18 8.13 23 8.56E05R0500 -1 100 47 -1 6.98 15 8.72 23 9.03FIDAP006 -1 94 295 -1 21.72 9 35.71 37 43.52FIDAP020 -1 -1 14 -1 18.08 -1 27.85 7 62.47FIDAP021 -1 -1 27 -1 8.31 -1 13.57 19 20.28FIDAP025 -1 -1 7 -1 16.21 -1 19.83 4 28.82FIDAP026 -1 452 220 -1 9.033 191 21.83 124 34.28FIDAPM02 -1 -1 36 -1 6.91 42 10.77 14 13.13LNS 131 -1 -1 5 -1 2.65 3 5.12 4 9.89NNC261 -1 15 36 -1 21.23 28 28.52 30 27.06NNC666 -1 17 44 -1 46.16 17 60.53 28 57.29As seen in the table, STATIC failed in solving any of the test matries with thetwo values of � exept E05R0300 that was solved in 197 iterations when � = 0:01;whereas NLD and NND solved the matrix in 28 and 20 iterations, respetively. NNDsolved all the test matries, while NLD solved 7 and 12 of the test matries when� = 0:1 and � = 0:01; respetively.In terms of spae omplexity, NLD and NND demanded more memory spae thanSTATIC on solving the test matries, but it would seem relatively minor omparedto the number of iterations with onvergene. For example, NND and NLD solvedthe CAVITY03, CAVITY04, E05R0500, and NNC666 matries in 36, 10, 15, and28 iterations with 1.075, 1.187, 1.249, and 1.241 times more memory storages thanSTATIC with no onvergene, respetively.85
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Comparison with Strategies of Dynami Sparsity PatternWe ompare our algorithms, NLD and NND, with the one by Bollh�ofer [15℄ in Ta-ble 6.4. Under \N/A," we report that the value is not available due to no onvergene,Table 6.3: Comparisons with di�erent dynami sparsity pattern strategies.� = 0:01NND Bollh�ofer's NLDMatrix iter time spar iter time spar iter time sparCAVITY03 36 0.53 8.95 47 0.57 8.63 19 0.45 9.16CAVITY04 23 0.43 8.35 28 0.38 7.24 10 0.32 7.35CAVITY06 15 16.85 30.96 -1 N/A 14.72 -1 N/A 15.55CAVITY08 22 17.79 31.48 355 28.73 21.89 46 15.09 25.71CAVITY11 22 137.27 65.57 -1 N/A 21.21 -1 N/A 25.49CAVITY13 33 141.67 65.63 -1 N/A 35.02 -1 N/A 43.55CAVITY15 40 149.86 67.95 -1 N/A 44.92 -1 N/A 52.39E05R0300 20 0.28 8.22 33 0.26 6.85 28 0.26 7.19E05R0400 23 0.30 8.56 42 0.33 7.63 18 0.27 8.13E05R0500 23 0.32 9.03 42 0.35 8.36 15 0.28 8.72FIDAP006 37 24.17 43.52 46 25.87 43.68 9 15.55 35.71FIDAP020 7 56.33 62.47 -1 N/A 28.95 -1 N/A 27.85FIDAP021 19 3.14 20.28 -1 N/A 13.75 -1 N/A 13.57FIDAP025 4 5.44 28.82 404 19.71 21.76 -1 N/A 19.83FIDAP026 124 89.99 34.28 -1 N/A 17.84 191 67.39 21.83FIDAPM02 14 1.73 13.13 46 1.98 11.05 42 1.85 10.77LNS 131 4 0.01 9.89 -1 N/A 4.91 3 0.01 5.12NNC261 30 0.15 27.06 27 0.14 27.03 28 0.16 28.52NNC666 28 1.17 57.29 18 0.99 57.56 17 1.05 60.53and \Bollh�ofer's" refers to the preonditioner with a dynami sparsity pattern pro-posed in [15℄.Based on the numerial results in Table 6.4, we reported the omparisons inthree aspets of auray, eÆieny, and memory storage. In terms of auray,NND performed better than Bollh�ofer's in most ases, and NLD was omparable toBollh�ofer's. For example, NND solved all of the test matries, while Bollh�ofer's andNLD solved 11 and 12 of the test matries, respetively. Spei�ally, the number ofiterations of NND is muh smaller than that of Bollh�ofer's and NLD (See Figure 6.1),and NND generally used less CPU time in solving the test matries than Bollh�ofer's.86
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(a) The CAVITY03 matrix (b) The CAVITY08 matrixFigure 6.1: The onvergene urves of the CAVITY matries.Also, with respet to the storage spae, NLD and NND might need slightly morememory storage than Bollh�ofer's, but NND still performed far better in onvergenethan Bollh�ofer's. For example, NLD using 1.174 times more memory storage solvedthe CAVITY08 matrix in 46 iterations while Bollh�ofer's solved in 355 iterations.Computational AnalysisIn this subsetion, we analyze the onvergene behavior of the Krylov subspae meth-ods with respet to the distribution of the eigenvalues and the ondition number ofthe eigenvetor matrix.Table 6.4: Largest and smallest eigenvalues and onditioning information of theLNS 131 matrix. Matrix �largest �smallest ond(X)A -1.19E+05 -1.23E-04 1.67E+17FAPINV(A) -8.50E+67 -2.29E-56 2.53E+30NLD(A) -1.55E+22 8.29E-13 7.82E+07NND(A) -1.52E+22 -1.43E-12 2.22E+08Table 6.4 and Figure 6.2 (a) report that the ondition number of the eigenvetormatrix of the original matrix A (LNS 131) is relatively large, and the eigenvaluesof the original matrix are spread on the positive and negative parts. The FAPINV87
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preonditioned matrix (FAPINV(A)) shifted spetrum to the left hand side of theorigin (See Figure 6.2 (b)), but the ondition number of the eigenvetor matrix isonsiderably large. As a result, the onvergenes of the GMRES method are failedon the original matrix and FAPINV(A).On the other hand, the NLD preonditioned matrix (NLD(A)) and the NND pre-onditioned matrix (NND(A)) performed di�erently in the aspet of the onditionnumber of the eigenvetor matries. The ondition numbers of the eigenvetor ma-tries of NLD(A) and NND(A) are signi�antly dereased as shown in Table 6.4. Inaddition, the distribution of the eigenvalues of LNS 131 preonditioned by NLD andNND shifted the spetrum to the left hand side of the origin (See Figure 6.2 () and(d)). These strongly support a good onvergene behavior of the GMRES method onthese NLD and NND preonditioned matries although the ondition number of theNLD and NND preonditioned matries are bit inreased.6.5 Conluding RemarksWe proposed two algorithms that determine the dynami sparsity patterns for theFAPINV preonditioners for solving general sparse matries. In the omputationphase, the dropping tolerane has been adaptively determined by the norm of theinverse fators and either the norm of the original fators or the largest value ofthe original fators. Numerial experiments showed that FAPINV with the proposeddynami sparsity pattern generates more aurate and robust preonditioner thanFAPINV with not only a stati sparsity pattern but also other dynami sparsitypattern (Bollh�ofer's) preonditioners do.
Copyright  Eun-Joo Lee, 2008.88
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Chapter 7 Conlusions and Future Work
In solving large and sparse linear systems, whih are usually generated from manyomputational siene and engineering problems, preonditioned Krylov subspaemethods are generally onsidered. This dissertation has been mainly foused on pre-onditioning tehniques to improve the performane and reliability of iterative meth-ods in solving linear systems. In this hapter, we summarize the spei� ontributionsof this dissertation and present opportunities for future work.7.1 AomplishmentsPreonditioned Krylov subspae methods are generally regarded as one lass of themost promising tehniques [9, 17, 19, 41℄ for solving very large and sparse linear sys-tems. In general, inomplete lower-upper (ILU) triangular fatorizations and sparseapproximate inverse (SAI) preonditioning tehniques have attrated muh attentionas a preonditioner beause they have been suessful in solving many symmetriand non-symmetri matries. These tehniques, however, may yield two ommonproblems. Firstly, their auray may be insuÆient to yield an adequate rate ofonvergene due to the diÆulty in determining parameters or threshold values inonstruting preonditioners. In addition, they may enounter diÆulty when thematrix to be solved is inde�nite, that is, when the matrix has both positive and neg-ative eigenvalues. Spei�ally, small or zero pivots in inde�nite matries may produeunstable and inaurate preonditioners. In response to these problems assoiatedwith preonditioning tehniques, we have onerned with improving auray andstability of a preonditioner in solving large and sparse matries.

90
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Inomplete LU (ILU) Preonditioning Enhanement StrategiesSeveral preonditioning enhanement strategies for improving inaurate preondi-tioners produed by the inomplete LU fatorizations of sparse matries were pre-sented. The strategies employ the elements that are dropped during the inompleteLU fatorization and utilize them in di�erent ways by separate algorithms. The �rststrategy (error ompensation) applies the dropped elements to the lower and upperparts of the LU fatorization to ompute a new error ompensated LU fatorization.Another strategy (inner-outer iteration), whih is a variant of the inomplete LUfatorization, embeds the dropped elements in its iteration proess. Experimentalresults showed that the presented enhanement strategies improve the auray ofthe inomplete LU fatorization when the initial fatorizations found to be inau-rate. Furthermore, our numerial experimental results showed that in many ases,the onvergene ost of the preonditioned Krylov subspae methods is redued onsolving the original sparse matries with the proposed strategies.Hybrid Reordering StrategiesInomplete LU fatorization tehniques often have diÆulty on inde�nite sparse ma-tries. We presented hybrid strategies for suh matries and new diagonal reorderingsthat are in onjuntion with a symmetri nondereasing degree algorithm. We �rst usethe diagonal reorderings to eÆiently searh for entries of single element and/or themaximum absolute value to be plaed on the diagonal for omputing a nonsymmet-ri permutation. In addition, a nondereasing degree algorithm is applied to reduethe �ll-in during the ILU fatorization. With the reordered matries, we ahieveda onsiderably improved performane of inomplete LU fatorizations in stability.Consequently, the onvergene ost of preonditioned Krylov subspae methods wasredued on solving the reordered inde�nite matries.
91
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Two-Phase Preonditioning StrategyAs a part of the ontinuous e�ort on solving inde�nite matries, a two-phase preon-ditioning strategy based on a fatored sparse approximate inverse has been proposed.In eah phase, the strategy �rst makes the original matrix diagonally dominant toenhane the stability by a shifting method and onstruts an inverse approximation ofthe shifted matrix by utilizing a fatored sparse approximate inverse preonditioner.The two inverse approximation matries produed from eah phase are then ombinedto be used as a preonditioner. Experimental results showed that the presented strat-egy improves the auray and the stability of the preonditioner on solving inde�nitesparse matries. Furthermore, the strategy ensures that onvergene rate of the pre-onditioned iterations of the two-phase preonditioning strategy is muh better thanthat of the standard sparse approximate inverse ones for solving inde�nite matries.Fatored Approximate Inverse Preonditioners with Dynami SparsityPatternsWe proposed two sparsity pattern seletion algorithms for fatored approximate in-verse preonditioners to enhane the performane of the preonditioned iterativesolvers. The sparsity pattern is adaptively updated in the onstrution phase byusing ombined information of the inverse and original triangular fators of the orig-inal matrix. In order to determine the sparsity pattern, our �rst algorithm uses thenorm of the inverse fators multiplied by the largest absolute value of the originalfators, and the seond employs the norm of the inverse fators divided by the normof the original fators. Experimental results showed that these algorithms improvethe auray and robustness of the preonditioners on solving general sparse matries.
92
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7.2 Future WorkOur researh area �ts well with other �elds and disiplines as we have signi�antollaborative experiene with researhers from omputer vision areas [40℄. Thus, ourfuture work will be applying the preonditioning methods to real-world appliations inorder to ahieve an improved performane in omputational time as well as auray.Preonditioner Reommendation SystemMy �rst plan for future work is to develop a preonditioner reommendation systemfor inde�nite matries based on the features of matries [65, 66℄. This idea is inspiredby the fat that sparse matries arising from disretized partial di�erential equationproblems possess ertain di�erent features represented by the sizes and the loationsof their nonzero entries. Thus, if it an be determined that the performane ofpreonditioned Krylov subspae methods is related to suh matrix features, it will bepossible to predit the performane of these preonditioned methods to solve othersparse matries that may have the same or similar features.Appliation AreasAlong with the development of a preonditioner reommendation system, my futurework will also be onentrated on applying these strategies presented above withexisting preonditioners and solvers. More spei�ally, the new deomposition teh-niques, aiming at solving irregularly strutured sparse linear systems, will also beused for potential appliation areas. Computational uid dynamis, large sale om-puter modeling and simulations are two examples in whih large sale linear systemsare routinely solved, and our preonditioning tehniques an be extended to aom-modate the requirement of the appliations.Copyright  Eun-Joo Lee, 2008.93
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