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ABSTRACT OF DISSERTATION
A

urate and Robust Pre
onditioning Te
hniquesfor Solving General Sparse Linear SystemsPre
onditioned Krylov subspa
e methods are generally regarded as one 
lass of themost promising te
hniques for solving very large and sparse linear systems, but thesemethods may produ
e instability and/or ina

ura
y problems for 
ertain matri
es.Ina

ura
y problems are usually 
aused by the diÆ
ulty in determining parametersor threshold values in 
onstru
ting pre
onditioners for some parti
ular matri
es. Inaddition, small or zero pivots in inde�nite matri
es may yield pre
onditioners thatare unstable and ina

urate. The purpose of this study is mainly 
on
erned withimproving stability and a

ura
y of pre
onditioners.Firstly, for the purpose of improving the a

ura
y of in
omplete lower-upper (ILU)fa
torization, two pre
onditioning a

ura
y enhan
ement strategies were proposed.The strategies employ the elements that are dropped during ILU fa
torization andutilize them in di�erent ways with separate algorithms. The �rst strategy (error
ompensation) applies the dropped elements to the lower and upper parts of theLU fa
torization to 
ompute a new error 
ompensated LU fa
torization. The otherstrategy (inner-outer iteration), whi
h is a variant of the ILU fa
torization, embedsthe dropped elements in the pre
onditioning iteration pro
ess.Se
ondly, in order to in
rease the a

ura
y and stability of pre
onditioners insolving inde�nite matri
es, hybrid reordering and two-phase pre
onditioning strate-gies based on in
omplete LU (ILU) fa
torization and a sparse approximate inverse(SAI) pre
onditioner, respe
tively are 
onsidered. These strategies attempt to repla
ethe small or zero pivots with large values, ensuring that the resulting pre
onditionersare better 
onditioned. Spe
i�
ally, the hybrid reordering strategies eÆ
iently sear
hfor the entries of single element and/or the maximum absolute value to pla
e the ele-ments on the main diagonal of the original matrix, and the two-phase pre
onditioningstrategy adopts the idea of a shifting method that adds a value to the diagonals ofan inde�nite matrix. The two-phase pre
onditioning strategy produ
es an inverseapproximation of the shifted matrix by 
onstru
ting a SAI pre
onditioner in ea
hphase. The two inverse approximation matri
es produ
ed from ea
h phase are then
ombined to be used as a pre
onditioner.
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Thirdly, with the intention of enhan
ing the 
onvergen
e performan
e of the pre-
onditioned iterative solvers, two sparsity pattern sele
tion algorithms for a fa
toredsparse approximate inverse pre
onditioner are 
onsidered. The sparsity pattern isadaptively updated in the 
onstru
tion phase of a pre
onditioner by using 
ombinedinformation of the inverse and original triangular fa
tors of the original matrix. Inorder to determine the sparsity pattern, the �rst algorithm uses the norm of the in-verse fa
tors multiplied by the largest absolute value of the original fa
tors, and these
ond employs the norm of the inverse fa
tors divided by the norm of the originalfa
tors.KEYWORDS: Linear System, Pre
onditioning, In
omplete LU (ILU) Fa
torization,Inde�nite Matri
es, Sparse Approximate Inverse (SAI) Pre
onditioner
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Chapter 1 Introdu
tion
Many 
omputational s
ien
e and engineering problems 
an be formulated in the formof partial di�erential equations (PDEs). The typi
al way to solve su
h equations isto dis
retize them, 
hanging a 
ontinuous problem into a dis
rete problem. Thesedis
retizations generally result in linear systems with large and sparse 
oeÆ
ientmatri
es, whi
h have to be solved eÆ
iently.For solving a linear system of the form:Ax = b; (1.1)either dire
t or iterative methods 
an be used. Here, A is a real (or 
omplex) valuedsparse 
oeÆ
ient matrix of order n; x is an unknown ve
tor, and b is a known right-hand side ve
tor. Dire
t methods, based on the fa
torization of the 
oeÆ
ient matrixA into easily invertible matri
es, allow exa
t 
omputations up to the ma
hine a

u-ra
y. On a

ount of their robustness, these methods are widely employed in manyindustrial areas where reliability is the primary 
on
ern. Dire
t methods, however,often be
ome ineÆ
ient for solving large s
ale problems. Espe
ially, the problemsarising from the dis
retization of PDEs in three spa
e dimensions sometimes lead tolinear systems 
omprising of hundreds of millions or even billions of equations [8℄.Generally speaking, dire
t methods are not useful to solve su
h large problems be-
ause (1) they have a 
omputational 
omplexity of O(n3) on an n�n matrix and (2)a large amount of memory 
ost 
aused by the �ll-ins, nonzero elements into originalzero element lo
ations, during the Gaussian elimination.Iterative methods should be utilized for solving large-s
ale problems by reason oftheir 
omputational eÆ
ien
y. These methods generate a sequen
e of approximatesolutions to the system that (hopefully) 
onverges to the exa
t solution. In addition,iterative methods require fewer storage and fewer operations than dire
t methods in1
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solving problems be
ause iterative methods avoid some of the 
osts asso
iated with�ll-in in matrix fa
tors. However, iterative methods do not have the same reliabilityof dire
t methods, and the 
onvergen
e of iterative methods is related to the 
onditionnumber of a 
oeÆ
ient matrix. This results that iterative methods often fail to attain
onvergen
e in a reasonable amount of time or even diverge in solving ill-
onditionedproblems.Pre
onditioning a matrix is useful to a

elerate the 
onvergen
e of iterative meth-ods. Pre
onditioning is a way to transform the original linear system (1.1) intoanother system of the form: M�1Ax = M�1b; (1.2)where M is a nonsingular matrix with the same order of A: Here, the system (1.2)is pre
onditioned from left, and the matrix M is 
alled a (left) pre
onditioner. Thepre
onditioned system (1.2) has the same solution of the original linear system (1.1),and M�1A generally attempts to provide a smaller 
ondition number than A:It has been widely noti
ed that pre
onditioning is the most 
ru
ial part in the de-velopment of eÆ
ient solvers for 
hallenging problems in s
ienti�
 
omputation [8, 57℄.Moreover, the importan
e of pre
onditioning has been more weighted as the size of theproblems to be solved has be
ome larger and larger. As a result, resear
h in matrixpre
onditioning has re
eived more attention than both dire
t methods and iterativemethods in past few years, and lots of e�orts have been made in developing e�e
tivepre
onditioners. This dissertation mainly fo
uses on pre
onditioning te
hniques toimprove the performan
e and reliability of iterative methods in solving general sparsematri
es.1.1 MotivationPre
onditioned Krylov subspa
e methods, whi
h are based on proje
tion pro
essesand are one of the most important iterative methods for solving large linear systems,2
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are generally regarded as one 
lass of the most promising te
hniques [9, 17, 19, 41℄for solving very large and sparse linear systems. In general, in
omplete lower-upper(ILU) and sparse approximate inverse (SAI) pre
onditioning te
hniques have beenwidely used and have been su

essful in solving many large and sparse matri
es.Su
h te
hniques, however, may 
ommonly en
ounter two major issues. Firstly, theira

ura
y is often insuÆ
ient to yield an adequate rate of 
onvergen
e due to the diÆ-
ulty in determining parameters or threshold values in 
onstru
ting pre
onditioners.In addition, they may 
onfront diÆ
ulty when a matrix to be solved is inde�nite,that is, when the matrix has both positive and negative eigenvalues. This is be
ausesmall or zero pivots in inde�nite matri
es may produ
e unstable and ina

urate pre-
onditioners.In response to these issues asso
iated with pre
onditioning te
hniques, we have
on
erned ourselves with improving a

ura
y and stability of a pre
onditioner insolving large and sparse matri
es.InsuÆ
ient A

ura
y of In
omplete LU (ILU) Fa
torizationThe 
onvergen
e of iterative methods 
an be a

elerated by using in
omplete LU(ILU) pre
onditioners asso
iated with an ILU fa
torization. ILU pre
onditionersusually perform quite well in solving symmetri
 and asymmetri
 matri
es. Most ILUpre
onditioners, however, have a 
ommon issue that the a

ura
y of ILU fa
torizationmay be insuÆ
ient to yield an adequate rate of 
onvergen
e be
ause of the droppedelements during the fa
torization.In general, more a

urate ILU fa
torizations are often more eÆ
ient as well asmore reliable [54, 55℄. In this way, we 
onsider two strategies to improve the a

ura
yof some ILU pre
onditioners. ILU(0) (in
omplete LU fa
torization with zero �ll-in) isone of the simplest ways to de�ne a pre
onditioner having the form of an in
omplete
3
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LU fa
torization A = LU + E; (1.3)where the L and U matri
es have the same nonzero stru
tures as those of the lowerand upper triangular parts of A; respe
tively, and E is the error or residual matrixof the fa
torization. A

ording to Saad [55℄, the elements of the error matrix Eare exa
tly those that are dropped during the ILU fa
torization. In standard ILUfa
torizations, the dropped elements are dis
arded. In order to improve the a

ura
yof the 
omputed ILU(0) pre
onditioner, we 
olle
t the dropped elements during theILU fa
torization pro
ess by paying little 
omputation and some storage spa
e that
an be ignorable in modern 
omputing environments.ILU(0) pre
onditioning is rather easy to implement and 
omputationally inex-pensive 
ompared to other ILU pre
onditioners, but it may require many iterationsto 
onverge due to its 
oarse approximation of the original matrix A [54, 55℄. Ithas been noti
ed that ILU fa
torization generally yield more a

urate fa
torizationsthan ILU(0) when numeri
al dropping strategies are adopted in the pro
esses of ILUfa
torization. The reason is that the dropping strategies try to minimize E in Equa-tion (1.3) in some sense [19℄.A

ordingly, ILUT (a dual threshold in
omplete LU fa
torization) [54℄ 
an be
onsidered as an alternative of ILU(0). ILUT approa
h relies on numeri
al values fordropping elements, and it has a limit on the number of allowed �ll-in elements. Also,this approa
h develops ILU fa
torization pre
onditioners with improved a

ura
y ifthe dropping toleran
e and the �ll-in parameters are 
hosen properly. On the otherhand, ILUT with large dropping toleran
e and small �ll-in does not 
onstitute areliable approa
h, and generally it gives low a

ura
y ILU fa
torizations [54, 55℄.In response to the a

ura
y issue asso
iated with ILU fa
torizations, we 
onsiderthe fa
t that the size of the error matrix E dire
tly a�e
ts the 
onvergen
e rate of thepre
onditioned iterative methods [32℄. Furthermore, the quality of a pre
onditioning4
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step is dire
tly related to the size of both (LU)�1 and E, that is, a high qualitypre
onditioner must have an error matrix that is small in size [68℄. The new pre
on-ditioning a

ura
y enhan
ement strategies proposed in Chapter 3 were inspired bys
rutinizing these fa
ts and exploiting the error values dropped in the fa
torizationto improve the a

ura
y of the in
omplete LU fa
torizations.The main idea of the error 
ompensation strategy is to use the error matrixbefore starting the pre
onditioned iteration pro
ess. After a
quiring the LU fa
tor-ization with a pre
onditioner, we add the error matrix E to the L and U matri
esto obtain an error 
ompensated fa
torization eLeU . The a

ura
y of using eLeU is in-
reased signi�
antly in some 
ases, 
ompared with that of using LU dire
tly, su
hthat jj eE(= A� eLeU)jj < jjE(= A� LU)jj.The se
ond pre
onditioning enhan
ement strategy (an inner-outer iteration pro-
ess) uses the error matrix during the pre
onditioned iteration pro
ess. It 
an be
onsidered as a variant of the LU solver with an error embedded LU approa
h.Limitations of Pre
onditioning Te
hniques for Inde�nite Matri
esInde�nite matri
es, whi
h have positive and negative eigenvalues, arise frequentlyfrom �nite element dis
retizations of 
oupled partial di�erential equations in 
ompu-tational 
uid dynami
s and other appli
ations. In solving su
h inde�nite matri
es,however, there are at least two reasons that make pre
onditioning te
hniques diÆ
ult[19℄. The �rst reason 
an be due to small or zero pivots in an inde�nite matrix thatmay lead to unstable and ina

urate fa
torizations [44℄. In addition, small pivots areusually related to small or zero entries on the diagonal of the matrix, so the inde�nitematrix with zero diagonal entries may have higher 
han
es of en
ountering zero pivotsif the matrix is also nonsymmetri
 [54, 68℄. Se
ondly, unstable triangular solutions
an be resulted when jjL�1jj and jjU�1jj are extremely large while the o�-diagonalelements of L and U are reasonably bounded. Su
h problems are usually 
aused by5
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very small pivots, but they may sometimes happen without a small pivot [19, 34, 68℄.As mentioned above that small pivots are often the origin of 
umbersome to
omputing ILU fa
torization on an inde�nite matrix, a better performan
e 
an beexpe
ted if small pivots would be repla
ed with some large values in the matrix.Starting from this idea, we proposed reordering strategies that reorder the rows ofthe matrix to in
rease the diagonal dominan
e rate of the rows.Many resear
hers [10, 27, 28, 30, 31℄ have fo
used on permuting large entries ontothe diagonal of inde�nite matrix in the situations of either using dire
t or iterativesolvers. For example, Du� and Koster [30, 31℄ exploited bipartite mat
hing algo-rithms and s
aling te
hniques for 
omputing permutations of a sparse matrix. Theirreordering and s
aling algorithms are e�e
tive to the performan
e of various methodsfor solving sparse matri
es. In experimental studies using Du� and Koster's [31℄ algo-rithms, Benzi et al. [10℄ 
onsidered mat
hing algorithms su
h as maximum transver-sal, maximum produ
t transversal, and the bottlene
k transversal with symmetri
permutations. However, their prepro
essing step in mat
hing is still 
ompli
atedwith several symmetri
 permutations.In order to solve inde�nite matri
es eÆ
iently, we present two diagonal reorder-ing algorithms that are 
omputationally inexpensive but eÆ
ient in the aspe
t ofreordering performan
e for inde�nite matri
es. To that end, we propose new hybridreordering strategies that are 
omposed with a 
ombination of two di�erent diagonalreorderings and a nonde
reasing degree algorithm presented in Chapter 4.Sparse Aapproximate Inverses and Inde�nite Matri
esOf the many types of pre
onditioners, sparse approximate inverse (SAI) pre
ondi-tioners, of whi
h the pre
onditioning pro
ess is just a (sparse) matrix-ve
tor produ
toperation, have re
ently be
ome popular in solving many appli
ation problems dueto their potential employment in parallel implementations [9, 16, 19, 18, 37, 38, 41℄.6
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And for parallelizable pre
onditioners, several versions of sparse approximate inverse(SAI) te
hniques have been developed [13, 16, 20, 21, 37, 41, 69℄ in the past few years.Unlike ILU-type pre
onditioners, whi
h need triangular solution pro
edures at everypre
onditioning step, SAI-type pre
onditioners possess a high degree of parallelismin the pre
onditioner appli
ation phase. Thus, SAI-type pre
onditioners would bean interesting alternative to ILU-type pre
onditioners [6, 7℄ that 
an be run on highperforman
e distributed memory parallel 
omputers.Sparse inverse pre
onditioning te
hniques may su

eed in solving 
ertain problemswhere the ILU fa
torizations are diÆ
ult to handle [18℄. It has been noti
ed thatfa
tored sparse approximate inverse (FAPINV), whi
h is a sparse approximate inversethat has a fa
tored form, tends to perform better in 
onvergen
e rate for the sameamount of nonzeros in the pre
onditioner and also requires less 
omputational 
ostthan a non-fa
tored form does. However, the resulting sparse approximate inverse
an still break down for solving inde�nite matri
es due to zero or small pivots [9, 69℄.A shifting strategy, whi
h adds a value to the diagonals of an inde�nite matrix,
an help the resulting pre
onditioner better 
onditioned [9, 51, 64℄, but determiningthe value to be added for small pivots is usually 
riti
al to the performan
e of theresulting pre
onditioner [44℄. In other words, sele
ting a large repla
ing value mayresult in a fa
torization that is stable but less a

urate. On the other hand, sele
tinga small repla
ing value may result in a fa
torization that is a

urate but unstable.Su
h a tradeo� of the shifting strategy has been well studied in [68℄.As part of our 
ontinuous e�orts on solving inde�nite matri
es, we propose toadopt the idea of a shifting strategy [51℄ to repla
e small or zero elements on thediagonal of the original matrix, and to reinfor
e with a two-phase pre
onditioningpro
ess to deal with the tradeo� between stability and a

ura
y of the resultingpre
onditioner in Chapter 5. More spe
i�
ally, the �rst phase of the 
onstru
tionpro
ess employs the shifting strategy to the original matrix so that a shifted matrix7



www.manaraa.com


an be well 
onditioned, and then an approximate inverse, M1; of the shifted matrixis obtained by utilizing FAPINV. In the se
ond phase of the 
onstru
tion pro
ess, atemporary matrix, a produ
t of M1 and the shifted matrix, is 
onsidered to a
quirea better approximate inverse of the original matrix than M1: Applying the shiftingstrategy again to the temporary matrix produ
es a se
ond shifted matrix, and FAP-INV 
omputes a se
ond approximate inverse matrix,M2; of the se
ond shifted matrix.Then the resulting sparse approximate inverse, M; has the form ofM = M2M1; whereM1 and M2 are 
omputed in ea
h phase.Sparse Approximate Inverses and Sparsity PatternsComputational eÆ
ien
y and potential parallelism of sparse approximate inverse(SAI)-type pre
onditioners leads us to 
hoose SAI pre
onditioners as an alternativeto the 
onventional ILU pre
onditioners. It has been noti
ed that the performan
eof SAI pre
onditioners depends on their sparsity patterns so that the sear
h for anoptimal sparsity pattern to 
onstru
t the SAI pre
onditioners should be taken withextreme 
are [62, 69℄.In determining the sparsity pattern of SAI, there exists two main 
lasses of meth-ods 
alled stati
 and dynami
 strategies. A stati
 sparsity pattern strategy pres
ribesthe sparsity pattern before 
onstru
ting a pre
onditioner, and the pattern remainsun
hanged until �nishing the 
onstru
tion. Although this 
lass of sparsity patternsele
tion strategy is usually eÆ
ient in terms of 
omputational 
ost due to the use ofa pres
ribed (�xed) pattern through the 
onstru
tion pro
ess, for general sparse ma-tri
es, the pres
ribed sparsity pattern is often inadequate for robustness [69℄. On the
ontrary, a dynami
 sparsity pattern strategy adjusts the pattern using some rules inthe 
onstru
tion phase. Su
h a strategy usually 
omputes more a

urate and morerobust pre
onditioners than a stati
 strategy [62℄. Thus, a dynami
 sparsity patternstrategy may be used to substitute for a stati
 sparsity pattern strategy in solving8
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diÆ
ult matri
es.In re
ent years, a few dynami
 pattern strategies [15, 41℄ for SAI pre
onditionershave been developed. For example, Bollh�ofer [14℄ showed that the norms of the inversetriangular fa
tors have dire
t in
uen
e on the dropping strategy in 
omputing a newILU de
omposition. Based on this insight, Bollh�ofer [15℄ proposed an algorithm thatmanages the pro
ess of dropped entries with small absolute values by using the rownorm of any row of the inverse fa
tors, but the algorithm has a limitation on solvingsome ill-
onditioned problems.In Chapter 6, we introdu
e two enhan
ed algorithms, whi
h extend the algo-rithm [15℄ mentioned above, using 
ombined information of the norm of the inversefa
tors and either the largest absolute value of the original fa
tors or the norm ofthe original fa
tors. Due to our enhan
ement strategy, the presented algorithms mayprodu
e better results in solving ill-
onditioned problems.1.2 OrganizationThis dissertation is 
omposed of seven 
hapters, notations are introdu
ed as the needarises, and 
on
lusions are given in ea
h 
hapter separately. The remainder of thisdissertation is organized as follows:� Chapter 2 provides some ba
kground on resear
h areas relevant to the restof the dissertation. Readers with prior knowledge in iterative methods andpre
onditioning te
hniques may want to skim this 
hapter.� In Chapter 3, several pre
onditioning enhan
ement strategies for improvingina

urate pre
onditioners generated by the in
omplete LU fa
torizations ofsparse matri
es are presented. The strategies employ the elements that aredropped during the in
omplete LU fa
torization and utilize them in di�erentways with separate algorithms. Experimental results of enhan
ement strategies9
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are presented to show a

ura
y improvement of the in
omplete LU fa
torizationin 
ase that the initial fa
torizations are found to be ina

urate.� In Chapter 4, we present hybrid strategies for inde�nite matri
es and new diag-onal reorderings that are in 
onjun
tion with a symmetri
 nonde
reasing degreealgorithm. With the reordered matri
es, we have a
hieved a 
onsiderably im-proved stability of in
omplete LU fa
torizations.� In Chapter 5, a two-phase pre
onditioning strategy based on FAPINV is pro-posed for solving sparse inde�nite matri
es. The presented strategy improvesthe a

ura
y and the stability of the pre
onditioner in solving inde�nite sparsematri
es.� In Chapter 6, we propose two sparsity pattern sele
tion algorithms for fa
toredapproximate inverse pre
onditioners in solving general sparse matri
es. Thesparsity pattern is adaptively updated in the 
onstru
tion phase by using 
om-bined information of the inverse and original triangular fa
tors of the originalmatrix.� Chapter 7 summarizes 
on
lusions of this dissertation and outlook for possiblefuture resear
h dire
tions.
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Chapter 2 Ba
kground
In solving a linear system Ax = b; dire
t methods or iterative methods 
an be 
onsid-ered. Dire
t methods are usually used in areas where reliability is the primary 
on
ernon a

ount of their delivery of exa
t solutions. The most widely known dire
t methodis Gaussian elimination, whi
h 
omputes a matrix fa
torization,A = LU;where L and U are lower and upper triangular, respe
tively. In order to solve a linearsystem Ax = b; the 
omputed fa
torization LUx = b 
an be utilized with forwardelimination (Ly = b) and ba
kward substitution (Ux = y). Gaussian elimination onan n� n matrix has a 
omputational 
omplexity of O(n3) and storage 
omplexity ofO(n2): However, dire
t methods be
ome ineÆ
ient in terms of operation 
ount andmemory requirement as the size of the linear systems in
reased.For solving su
h large and sparse linear systems, iterative methods, whi
h generatea sequen
e of approximate solutions to the systems, are generally employed due totheir more favorable 
omputational eÆ
ien
y than dire
t methods. In fa
t, iterativemethods, when implemented properly, may require less storage and fewer 
omputingoperations than dire
t methods (See [55℄ for more details).This 
hapter is to provide ba
kground knowledge on resear
h areas relevant to therest of the dissertation. The most relevant topi
s are the 
onvergen
e rate of iterativemethods and pre
onditioning te
hniques that are dis
ussed in Se
tion 2.1. Of severaltypes of pre
onditioners in solving large and sparse linear systems, we introdu
ein
omplete LU (ILU) pre
onditioner (in Se
tion 2.2) and sparse approximate inverse(SAI) pre
onditioner (in Se
tion 2.3) that will be frequently referred later in thedissertation. 11
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2.1 Pre
onditioned Iterative MethodsIterative methods are usually employed in solving large and sparse linear systemsbe
ause of their 
omputational eÆ
ien
y. However, they do not have the reliabilityof dire
t methods and often fail in some appli
ations to attain 
onvergen
e in areasonable amount of time [8, 55℄. In order to improve the reliability and 
onvergen
erate of iterative methods, pre
onditioning, whi
h transforms an original linear systeminto another equivalent system that is easier to solve, is required.The Convergen
e of Iterative MethodsGenerally speaking, there are two types of iterative methods, stationary iterativemethods and Krylov subspa
e (nonstationary) methods. Stationary iterative methodsare old-fashioned and simple to drive, implement, and analyze, but usually not ase�e
tive as Krylov subspa
e methods. Examples of stationary iterative methodsare the Ja
obi method and the Gauss-Seidel method. Krylov subspa
e methods arerelatively new and 
an be highly e�e
tive, but these methods are harder to drive,implement, and analyze. Prototypes of Krylov subspa
e methods are the 
onjugategradient method (CG), the generalized minimal residual method (GMRES), and thebi
onjugate gradient method (BiCG) [5℄.It has been noti
ed that the 
onvergen
e rate of iterative methods are stronglyrelated to the distribution of eigenvalues of the 
oeÆ
ient matrix of a linear systemAx = b [1, 2, 8, 23, 25, 55℄. In this subse
tion, we present a general stru
ture and the
onvergen
e rate of iterative methods.Stationary iterative methods de�ne a sequen
e of iterates of the form:xk+1 = Gxk + f; k = 0; 1; � � � ; (2.1)where G is a 
ertain iteration matrix, f is a �xed ve
tor, and x0 is an initial guess.If the iteration 
onverges, then the limit is the solution of the original system Ax =12
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b [55℄.In order to determine the 
onvergen
e rate of iterative methods, we begin withthe de�nition of spe
trum and spe
tral radius.De�nition 2.1.1. The spe
trum of a matrix A; denoted by �(A); is the set of alleigenvalues of A: The spe
tral radius is the maximum size of the eigenvalues of Aand denoted by �(A) = max1�i�k(j�ij);where �1; � � � ; �k are the eigenvalues of A:Theorem 2.1.2 [55℄ shows that the 
onvergen
e rate of an iterative method stronglydepends on the spe
trum of the 
oeÆ
ient matrix A:Theorem 2.1.2. Let G be a square nonsingular matrix su
h that �(G) < 1: ThenI �G is nonsingular and the iteration (2.1) 
onverges for any f and x0: Conversely,if the iteration (2.1) 
onverges for any f and x0; then �(G) < 1:From the results of Theorem 2.1.2, we note that the spe
trum value of the iterationmatrix G is less than 1 is a ne
essary and suÆ
ient 
ondition for the iteration to
onverge.The rate of 
onvergen
e of Krylov subspa
e methods is also strongly related tothe distribution of the eigenvalues of A [8, 36, 55℄. For example, the 
onvergen
e rateof the 
onjugate gradient (CG) method depends on the distribution of the eigenvalueof A; that is, for a symmetri
 positive de�nite matrix A; if the matrix has a smallerspe
tral 
ondition number and/or eigenvalues 
lustered around 1, the CG methodusually results in a rapid 
onvergen
e. This 
an be seen from the following result [36℄.Theorem 2.1.3. Suppose A 2 Rn�n is symmetri
 positive de�nite and b 2 Rn: IfCG method produ
es iterates fxkg and � = �n=�1; where �n and �1 are the largest
13
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and smallest eigenvalues of the matrix A; respe
tively. Thenjjxk � xjjA � 2jjx� x0jjA(p�� 1p�+ 1)k:Here, the norm jj � jjA is the operator norm with respe
t to the symmetri
 positivede�nite matrix A: For two ve
tors (x; y 2 Rn), the inner produ
t with respe
t to Ais de�ned as (x; y)A = yTAx:The operator norm with respe
t to A is de�ned as jjxjjA =p(x; x)A:In general, Krylov subspa
e methods often produ
e rapid 
onvergen
e when amatrix A has a 
lustered spe
trum (away from 0) [1, 8, 55℄.Pre
onditioned IterationsAlthough 
omputational eÆ
ien
y of iterative methods indu
es their wide usage insolving large and sparse linear systems, they potentially have an issue of slow 
onver-gen
e for linear systems that arise from many appli
ations in
luding 
uid dynami
sand ele
troni
 devi
e simulation [55℄. In these appli
ations, pre
onditioning plays animportant role for the su

ess of iterative methods be
ause it 
an improve both theeÆ
ien
y and robustness of iterative methods [8, 36, 55℄.Pre
onditioning transforms an original linear system Ax = b into another sys-tem, whi
h has the same solution of the original system, with more favorable eigen-spe
trum properties for an iterative solver. Generally speaking, pre
onditioning aimsat improving spe
tral properties of the 
oeÆ
ient matrix. The transformed matrix is
alled a pre
onditioned matrix that expe
tantly will have a smaller spe
tral 
onditionnumber and/or eigenvalues 
lustered around 1 [8℄.There are three ways to apply pre
onditioning te
hniques. If M is a nonsingularmatrix and approximates A; then the linear system of the form:M�1Ax =M�1b (2.2)14
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has same solution as Ax = b: Here, M is a pre
onditioner; and Equation (2.2) ispre
onditioned from the left. Also, the pre
onditioner 
an be applied to the right:AM�1u = b; x = M�1u:In addition, split pre
onditioning of the form:M�1L AM�1R u = b; x =M�1R u;is also possible when the pre
onditioner is available in the fa
tored formM = MLMR;where ML and MR are typi
ally triangular matri
es [55℄.In order for a pre
onditioner to be eÆ
ient, the 
onstru
tion 
ost of the pre
ondi-tioning matrixM should be low, and the 
omputation 
ost of the inverse ofM or thesolution with the matrix M should be inexpensive. That is, a good pre
onditioner,M; should be easy to solve with and also 
heap to 
onstru
t and apply [8, 55℄. In thenext two se
tions, we 
ontinue dis
ussing two of the most widely used pre
onditioningte
hniques, the in
omplete fa
torization methods and sparse approximate inverses.The a

ura
y and stability of pre
onditionersThe 
onditioning of a matrix a�e
ts the a

ura
y of the 
omputed solution. A matrixis said to be ill-
onditioned if a small 
hange in the data 
auses a large 
hange inthe solution, otherwise it is well-
onditioned. Ill-
onditioning or well- 
onditioning ofa matrix problem is generally measured by means of a number 
alled the 
onditionnumber. The 
ondition number, �; is� = jjAjjjjA�1jj:If the 
ondition number of a pre
onditioner, M�1; is large, 
omputations withthe matrix M�1 is likely to be ina

urate. The reason is that with a large 
onditionnumber, even a small error in the right-hand side of a linear equation may 
ause alarge error in the solution of the equation. In that 
ase, the pre
onditioned matrix,15
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M�1A; might be worse 
onditioned than the original matrix A; and also the pre
on-ditioned GMRES method might need more iterations to 
onverge or not 
onverge atall. However, 
onvergen
e might happen even if the a
tual residual norm is still largewhen the initial residual norm is large. Su
h 
onvergen
e is 
alled a false 
onvergen
e.In order to determine a false 
onvergen
e from a true 
onvergen
e, we use somestatisti
al information to estimate 
ondition numbers of the pre
onditioned matri
es.A statisti
 \
ondest", suggested by Chow and Saad [19℄, is utilized to estimate the
ondition number by 
al
ulating jj(LU)�1ejj1; where e is the ve
tor of all ones. Thisstatisti
s indi
ates a relation between the unstable triangular solutions and the poorly
onditioned L and U fa
tors.2.2 In
omplete Fa
torization Pre
onditionersOne of the widely used pre
onditioners is based on in
omplete fa
torization of the 
o-eÆ
ient matrix A: In
ompleteness 
an be generated during the fa
torization pro
ess,that is, 
ertain �ll-in elements, whi
h are nonzero in the fa
torization at positionswhere the original matrix had a zero, have been dis
arded. This type of pre
ondi-tioner produ
es a de
omposition of the form:A = LU � R;where L and U are lower and upper triangular matri
es, respe
tively, and R is theresidual or error of the de
omposition. Here, the pre
onditioner is given in a fa
toredform M = LU; and the eÆ
a
y of the pre
onditioner depends on how well M�1approximates A�1:Now, we des
ribe the ILU(0) fa
torization, the simplest form of in
omplete LU(ILU) pre
onditioners and ILUT that is more a

urate and the most widely used ILUpre
onditioner.
16
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ILU(0)In
omplete LU fa
torization takes a set P of the matrix entry positions to be pre
iselythe nonzero pattern of the matrix A and keeps all positions outside this set equal tozero during the fa
torization. The set P is generally 
hosen to en
lose all nonzeropositions of A; and a position is 
alled a �ll-in position when the position is zero inA but is not zero in an exa
t fa
torization.ILU(0) fa
torization is an in
omplete LU fa
torization with no �ll-in position.That is, ILU(0) fa
torization takes a set P = NZ(A) and entails a pre
onditionerM = LU; where L and U have the same nonzero stru
ture as the lower and upperparts of A; respe
tively, and NZ(A) is the nonzero positions in A: An example of theILU(0) fa
torization for a �ve-point matrix is shown in Figure 2.1 [55℄. The pro
edureof the ILU(0) fa
torization is des
ribed in Algorithm 2.2.1 [55℄.Algorithm 2.2.1. The ILU(0) algorithm.1. For i = 2; : : : ; n2. For k = 1; : : : ; i� 13. If (i; k) 2 NZ(A); then4. Compute aik = aik=akk5. For j = k + 1; : : : ; n6. If (i; j) 2 NZ(A); then7. Compute aij = aij � aikakjILU(0) fa
torization is rather easy to implement and inexpensive to 
ompute,and it is e�e
tive for 
ertain matri
es from low-order dis
retizations of s
alar ellipti
PDEs and diagonally dominant matri
es. On the other hand, ILU(0) fa
torizationoften produ
es a rough approximation to the original matrix. For diÆ
ult problems,the a

ura
y of the ILU(0) fa
torization may be insuÆ
ient to yield an adequate rate17
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Figure 2.1: The ILU(0) fa
torization for a �ve-point matrix with �ve nonzero diago-nals.of 
onvergen
e [8, 54, 55℄. In order to obtain better approximation, several alternativein
omplete fa
torizations have been developed by allowing more �ll-in in L and U:ILUT: A Dual Threshold ILU Fa
torizationIn the pro
ess of in
omplete fa
torization, dropped elements are usually determinedby the stru
ture of the matrix A rather than the numeri
al values of the matrix.This often derives some diÆ
ulties in solving for realisti
 problems. In order toremedy this, a few alternative methods are available based on dropping elementsin the Gaussian elimination pro
ess a

ording to their magnitude instead of their18
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lo
ations. With these te
hniques, ILUT (In
omplete LU (ILU) fa
torization witha dual threshold) fa
torization, whi
h sele
ts the dropped elements dynami
ally, isone of widely employed alternative methods. This pre
onditioner utilizes two-stepdropping strategy to 
ontrol �ll-in during its 
onstru
tion phase.The dropping strategy in ILUT works as the follows: (1) The threshold in L andU is set by tol. Any element whose magnitude is less than tol (relative to the absolutevalue of the diagonal element of the 
urrent row) is dropped. (2) Keeping only thelargest lf il elements in the ith row of L and the largest lf il element in the ith rowof U (ex
luding the diagonal elements) [54, 55℄. The ILUT algorithm is presented inAlgorithm 2.2.2 [55℄. Note that ai� denotes the ith row of A:Algorithm 2.2.2. The ILUT algorithm.1. For i = 2; : : : ; n2. w = ai�3. For k = 1; : : : ; i� 14. If wk 6= 0; then5. wk = wk=akk6. Apply a dropping rule to wk7. If wk 6= 0; then8. w = w � wk � uk�9. Apply a dropping rule to row w10. For j = 1; : : : ; i� 111. li;j = wj12. For j = i; : : : ; n13. ui;j = wj14. w = 0
19
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ILUT pre
onditioner has been one of eÆ
ient and robust pre
onditioners for iter-ative solvers, and the 
onstru
tion 
ost of ILUT is not expensive [55, 70℄. In addition,the ILUT pre
onditioner is eÆ
ient when the two dropping parameters tol and lf ilare 
hosen 
arefully, and the total storage of L and U is bounded by 2n� lf il [55, 70℄.In fa
t, lf il 
an be viewed as a parameter that helps 
ontrol memory usage, while tolhelps redu
e 
omputational 
ost.2.3 Sparse Approximate InversesOf the many types of pre
onditioners, re
ently sparse approximate inverse (SAI) pre-
onditioners, of whi
h the pre
onditioning pro
ess is just a (sparse) matrix-ve
torprodu
t operation, have be
ome popular in solving many appli
ation problems dueto their potential in parallel implementations [9, 16, 19, 18, 37, 38, 41℄. Unlike in
om-plete LU (ILU)-type pre
onditioners, whi
h need triangular solution pro
edures thatis diÆ
ult to perform on parallel 
omputers, SAI-type pre
onditioners possess highdegree of parallelism in the pre
onditioner appli
ation phase. Thus, SAI-type pre
on-ditioners are interesting alternative of ILU-type pre
onditioners on high performan
edistributed memory parallel 
omputers [6, 7℄.For parallelizable pre
onditioners, several versions of sparse approximate inverse(SAI) te
hniques have been developed [13, 16, 20, 21, 37, 41, 69℄ in the past few years.In general, there 
an be three 
ategories to 
onstru
t SAI te
hniques; sparse approx-imate inverses based on Frobenius norm minimization [20, 21, 22, 37, 41℄, sparseapproximate inverses 
omputed from an ILU fa
torization [55℄, and fa
tored sparseapproximate inverses [13, 45℄. Ea
h of these 
ategories 
ontains its own advantagesand limitations in the aspe
ts of 
onstru
tion 
ost, appli
ation 
ost, robustness, andeÆ
ien
y [12, 20, 37, 59℄.
20
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Sparse Approximate Inverses based on Frobenius Norm MinimizationSparse approximate inverses [20, 21, 22, 37, 41℄ based on Frobenius norm minimizationis the most popular and simple approa
h for �nding approximate inverses. The basi
idea of this approa
h is to 
ompute a sparse matrix M � A�1 that minimizes theFrobenius norm of the residual matrix I � AM :F (M) = jjI � AM jj2F ; (2.3)where jj�jjF denotes the Frobenius norm1 of a matrix. The minimization problem (2.3)
an be de
oupled into the sum of the squares of the 2-norms of the individual 
olumnsof the residual matrix as: jjI � AM jj2F = nXj=1 jjej � Amjjj22;where ej and mj denote the jth 
olumns of the identity matrix and of the matrix M;respe
tively. It follows that the 
omputation of M is equivalent to minimizing theindividual fun
tions fj(m) = jjej � Amjjj22;for j = 1; 2; � � � ; n: In other words, ea
h 
olumn ofM 
an be 
omputed independentlyso that the 
omputation of M 
an be 
arried out in parallel. However, the 
onstru
-tion of the sparse approximate inverses based on norm minimization is sometimesvery expensive, and parallel implementations are ne
essary for them to be pra
ti
allyuseful [4, 37℄.Sparse Approximate Inverses Computed from an ILU Fa
torizationA

ording to Benzi and Tuma [12℄, sparse approximate inverses 
omputed from anILU fa
torization has a two-phase pro
ess, fa
torization phase and inverting phase.In other words, an in
omplete LU (ILU) fa
torization A � ~L ~U is 
omputed �rstly by1Frobenius norm is de�ned for a matrix A = (aij)n�n as jjAjjF =qPni;j=1 aij2:21
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using standard te
hniques, and then in
omplete fa
tors ~L and ~U are approximatelyinverted. This approa
h 
an produ
e the 
omputation of a pre
onditioner with twophases of in
ompleteness. As a result, these methods may be diÆ
ult to use inpra
ti
e [12, 69℄.Fa
tored Sparse Approximate InversesIn this subse
tion, we dis
uss fa
tored sparse approximate inverses based on thein
omplete inverse fa
torizations of A�1 [12, 69℄. Fa
tored sparse approximate inverse
an be 
onstru
ted by 
omputing sparse approximations ~L � L and ~U � U whenA�1 
an be fa
torized A�1 = LDU; where L is unit lower triangular, D is diagonal,and U is unit upper triangular. The fa
tored approximate inverse is thenM = ~L ~D ~UT � A�1;where ~D is a nonsingular diagonal matrix, ~D � D: The weakness of this approa
his the la
k of parallelism in the 
onstru
tion phase, but fa
tored sparse approximateinverses have some advantages over the two approa
hes previously introdu
ed. Theadvantages are that (1) fa
tored sparse approximate inverses often result in better
onvergen
e rates with the same storage requirement, and (2) fa
tored forms are lessexpensive to 
ompute [12, 69℄.Several resear
hers [11, 69℄ 
onsidered algorithms to improve the parallelism offa
tored approximate inverses so that one 
an use the advantages of the fa
toredapproximate inverses over the other sparse approximate approa
hes. Zhang [69℄ pro-posed an fa
tored inverse algorithm that is derived from a matrix de
ompositionmethod for inverting nonsymmetri
 matri
es. In this dissertation, we utilized thefa
tored sparse inverses based on an algorithm from [69℄ that possesses greater inher-ent parallelism. The fa
tored inverse algorithm [69℄ is presented in Algorithm 2.3.1,and the algorithm returns M = LDU � A�1:22
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Algorithm 2.3.1. Fa
tored Inverse Algorithm for Sparse Matri
es [69℄.1. For j = n! 1 with step (-1)2. For i = j + 1;! n3. wi = Aji +Pnk=i+1Ajk � Lki4. For i = j + 1;! n5. wi = wi �Dii6. vi = �wi7. For i = j + 1;! n8. For k = i+ 1;! n9. vk = vk � wk � Uik10. For i = j + 1;! n11. Uji = vi12. Djj = 1=(Ajj +Pnk=j+1Ujk � Akj)13. For i = j + 1; n14. w(j)i = Aij +Pnk=i+1 Uik � Akj15. For i = j + 1; n16. wi = wi �Dii17. vi = �wi18. For i = j + 1;! n19. For k = i+ 1;! n20. vk = vk � wk � Lki21. For i = j + 1;! n22. Lij = viNote that L = [L1; L2; � � � ; Ln℄ denotes a lower triangular matrix of order n; Lijrepresents an (i; j) element in L; and Li is a 
olumn ve
tor of length n with Lii = 1; i =23
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1; 2; � � � ; n: Similarly, U = [U1; U2; � � � ; Un℄ represents an upper triangular matrix oforder n; Uij is an (i; j) element in U; and Ui denotes row ve
tors of length n withUii = 1; i = 1; 2; � � � ; n: A diagonal matrix is denoted by D = diag[D11; D22; � � � ; Dnn℄.
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Chapter 3 In
omplete LU Pre
onditioning Enhan
ement Strategies
In this 
hapter, we dis
uss the ina

ura
y problems asso
iated with in
omplete LU(ILU) fa
torization. In order to improve ina

urate pre
onditioners produ
ed by ILUfa
torizations, two pre
onditioning enhan
ement strategies are presented. The strate-gies employ the elements that are dropped during the ILU fa
torization and utilizethem in di�erent ways by separate algorithms. The �rst strategy (error 
ompensa-tion) applies the dropped elements to the lower and upper triangular parts of theILU fa
torization to 
ompute a new error 
ompensated LU fa
torization. The otherstrategy (inner-outer iteration), whi
h is a variant of the ILU fa
torization, embedsthe dropped elements in its iteration pro
ess.This 
hapter is organized as follows: In Se
tion 3.2, pre
onditioning enhan
ementstrategies arising from ILU pre
onditioning and their analyses are presented. Theexperimental results are in Se
tion 3.3, and the 
on
luding remarks are dis
ussed inSe
tion 3.4.3.1 Introdu
tionIn
omplete LU (ILU) fa
torization, whi
h is 
onstru
ted from the in
omplete lower-upper fa
torization, is one of the most popularly used pre
onditioners. However,a 
ommon problem with su
h ILU pre
onditioners is that their a

ura
y may beinsuÆ
ient to yield an adequate rate of 
onvergen
e. This problem is usually 
ausedby the diÆ
ulty in determining even a small number of parameters or thresholdvalues for the ILU fa
torizations for some parti
ular matri
es. In addition, there stillremains as a tradeo� problem between the fa
torization a

ura
y and the 
osts of the
omputation and memory asso
iated with the fa
torization.In the form of an ILU fa
torization by in
orporating the error or residual matrix,25
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E, we have A = LU + E; (3.1)where L and U are the lower and upper parts of A; respe
tively. The elements ofthe error matrix E are just dis
arded in standard ILU fa
torizations. It has beenknown that the size of the error matrix E dire
tly a�e
ts the 
onvergen
e rate of thepre
onditioned iterative methods [32, 55℄. Moreover, the quality of a pre
onditioningstep is dire
tly related to the size of both (LU)�1 and E, that is, a high qualitypre
onditioner must have an error matrix that is small in size [31, 68℄.Based on the understanding of these fa
ts, we propose two new pre
ondition-ing a

ura
y enhan
ement strategies that exploit the error values dropped in thefa
torization to improve the a

ura
y of ILU fa
torizations. This then leads us tothe idea of the error 
ompensation strategy that utilizes the error matrix beforethe start of the pre
onditioned iteration pro
ess. After a
quiring an ILU fa
toriza-tion with a pre
onditioner, we add the error matrix E to L and U to obtain anerror 
ompensated fa
torization eLeU . The a

ura
y of using eLeU is in
reased signif-i
antly in some 
ases, 
ompared with that of using LU dire
tly, in the sense thatjj eE(= A� eLeU)jj < jjE(= A� LU)jj.The other pre
onditioning a

ura
y enhan
ement strategy uses the error matrixduring the pre
onditioned iteration pro
ess. This 
an be 
onsidered as a variant of theLU solver with an error embedded LU approa
h and results in an inner-outer iterationpro
ess. Numeri
al results of the inner-outer iteration strategies are provided to showthat this algorithm requires fewer outer iterations to 
onverge. In other words, a fewinner iteration at ea
h pre
onditioning step redu
es the number of outer iterations ofthe pre
onditioned iterative solver. Note that in order to 
olle
t the elements duringthe ILU fa
torization pro
ess, additional 
omputation 
ost and some memory spa
esare required to keep these elements. This, however, 
an be negligible as low 
oststorages be
ome available. 26
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3.2 Pre
onditioning A

ura
y Enhan
ement StrategiesILU fa
torizations are made in
omplete by dropping 
arefully 
hosen nonzero ele-ments to make the fa
torizations more e
onomi
al to store, 
ompute, and solve withit. Ea
h nonzero element that is dropped 
ontributes to the \error" in the fa
toriza-tion [19℄. In this se
tion, we assume that ILU fa
torizations in question are stable,and propose an error 
ompensation algorithm and an inner-outer iteration algorithmto improve the a

ura
y of the (ina

urate) ILU fa
torizations.Matrix Error Compensation StrategyWe propose an algorithm to improve the pre
onditioning a

ura
y by redu
ing thesize of the error matrix E and (LU)�1E in Equation (3.1). By swit
hing the matrixA and LU , Equation (3.1) 
an be written as:E = A� LU: (3.2)Then the error matrixE 
an be separated into two parts, 
orresponding to the nonzerostru
tures of L and U , in the following way:E = El + Eu;where El and Eu are the stri
tly lower and upper triangular parts of E; respe
tively.In order to a
quire error 
ompensated eL and eU , the separated error matri
es, El andEu, are now 
ombined with the original lower part (L) and upper part (U) of thepre
onditioned matrix: eL = L+ El; eU = U + Eu:These new lower triangular part eL and upper triangular part eU are then used as thepre
onditioner instead of the original L and U . In other words, eL and eU are usedin the pre
onditioning steps, i.e., we solve (eLeU)e = r instead of (LU)e = r at ea
h27
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pre
onditioning step. Here e and r are the error and residual ve
tors of the 
urrentapproximate solution. In the experimental results presented in Se
tion 3.3, we will seethat repla
ing LU solver with the new eLeU results in a more a

urate pre
onditioner.In many 
ases, the size of the error matrix with the new eLeU is smaller than that withthe original LU .In order to provide a better pi
ture of the algorithm, an ILU fa
torization in whi
hthe error 
ompensated L and U improves the a

ura
y of the original fa
torization isgiven in the following: The ILU(0) fa
tors L and U of a given matrixA = 0BBBB� 2 1 11 2 01 0 2
1CCCCAare L = 0BBBB� 1 0 00:5 1 00:5 0 1

1CCCCA ; U = 0BBBB� 2 1 10 1:5 00 0 1:5
1CCCCA ;from whi
h we 
an 
ompute the error matrix E = A� LU asE = A� LU = 0BBBB� 0 0 00 0 �0:50 �0:5 0

1CCCCA :The error matrix E is then split into two parts, El and Eu. We add El and Eu tothe original in
omplete lower and upper triangular parts of A. This results in a newin
omplete LU fa
torseL = 0BBBB� 1 0 00:5 1 00:5 �0:5 1
1CCCCA ; eU = 0BBBB� 2 1 10 1:5 �0:50 0 1:5

1CCCCA :
28
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From the above A, eL, and eU , we 
an obtain an new error matrix eE as:eE = A� eLeU = 0BBBB� 0 0 00 0 00 0:25 �0:25
1CCCCA :Table 3.1 presents the 
omparisons of the sizes of the error matri
es in the examplegiven above. The sizes of the pre
onditioned error matrix for the error 
ompensatedpre
onditioner and the original pre
onditioned matrix are measured in the 2-normand the Frobenius norm. The 
ase using error 
ompensated pre
onditioned matrixredu
es the error norm by 36% on average. The error 
ompensation algorithm 
anTable 3.1: Comparison of the size of pre
onditioned error matri
es E and eE.Norm E eE (LU)�1E (eLeU)�1 eE2-norm 0.5 0.3536 0.4082 0.2940Frobenius norm 0.7071 0.3536 0.5270 0.2940have four di�erent implementations. The above des
ription assumes that both the Land U fa
tors are 
ompensated. If none of them is 
ompensated, we have the standardILU pre
onditioner. If either one of them, but not both fa
tors, is 
ompensated, wehave two forms of partial error 
ompensations.An Inner-Outer Iteration Pro
essIn this subse
tion, we des
ribe an error embedded variant of ILU pre
onditioningpro
ess to 
ompensate dropped elements during the ILU fa
torization. In solving alinear equation with a standard pre
onditioned iterative solver, the pre
onditioningstep is an LU solution pro
ess with an ILU fa
torization type pre
onditioner, i.e., tosolve (LU)e = r for the residual ve
tor r of the 
urrent approximate solution and toget an approximate 
orre
tion ve
tor e. For notational 
onvenien
e, we denote the
urrent approximate solution as ~x. The 
urrent residual ve
tor is ~r = b � A~x. Theideal pre
onditioning step is to solve A~e = ~r and to 
orre
t the approximate solution29
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~x to get the exa
t solution as (~x+ ~e). Sin
e solving A~e = ~r is as expensive as solvingthe original system Ax = b and is thus impra
ti
al in a pre
onditioning step, we 
anagain use an iteration pro
edure to approximately solve A~e = ~r to a
hieve a goodpre
onditioning e�e
t. If the error matrix is available, we 
an split the matrix A asin Equation (3.1), so, for an idealized pre
onditioning step, we have(LU + E)e = r; (3.3)or LUe + Ee = r: (3.4)As a stationary iteration pro
ess, Equations (3.3) and (3.4) 
an be rewritten by:LUe(k+1) = r � Ee(k);and e(k+1) = (LU)�1(r � Ee(k)) (3.5)respe
tively. This iteration pro
ess starts with e(0) = 0, and LUe(1) = r is just thestandard one step ILU pre
onditioning pro
edure. Better pre
onditioning e�e
t 
anbe a
hieved by performing a few iterations at ea
h pre
onditioning step. This will
onstitute an inner-outer iteration s
heme and is well-known for the pre
onditionedKrylov method, as ea
h outer Krylov iteration step is pre
onditioned by a series ofinner stationary iteration steps.The ne
essary and suÆ
ient 
ondition to 
onverge for the inner iteration pro
ess,given by Equation (3.5), is that the spe
tral radius of the iteration matrix (LU)�1E issmaller than 1. This is, of 
ourse, not automati
ally guaranteed. However, we foundthat the inner iteration pro
ess usually 
onverges, when the ILU fa
torization of theoriginal matrix A is stable and the LU fa
tor is not an extremely poor approximationto the original matrix A. We point out that the inner-outer iteration strategy is nota new one, but here we study it in a systemati
 way.30



www.manaraa.com

AnalysisIn order to validate the presented algorithms, the 
omparison of the size of the errormatri
es of a �ve-point matrix is given in Table 3.2. A �ve-point matrix (of a �nitedi�eren
e dis
retization of a Poisson equation), A, of size n = 400 
orrespondingto an nx � ny = 20 � 20 mesh is used. The sizes of the error matrix, E, from theoriginal pre
onditioner and the new error matrix, eE, from the error 
ompensatedpre
onditioner are measured in the 2-norm and the Frobenius norm. For the 
aseTable 3.2: Comparison of the size of pre
onditioned error matri
es E and eE.Norm E eE (LU)�1E (eLeU)�1 eE (eLU)�1 eE (LeU)�1 eE2-norm 0.5788 0.3582 0.9276 0.8889 0.9109 0.9106Frobenius norm 7.7958 3.2058 3.6129 2.4812 3.1488 3.1447Spe
tral radius 0.9276 0.8885 0.9098 0.9098using the error 
ompensated algorithm, the norms (2-norm and Frobenius norm) in
olumns 2 and 3 in Table 3.2 show the fa
t that the norms of the new error matrix aresmaller than the norms of the original error matrix, and also the norms (2-norm andFrobenius) in 
olumns from 4 to 7 show that all the norms (2-norm and Frobenius)of the 
orresponding matri
es in 
olumns from 5 to 7 are smaller than the norms in
olumn 4. In addition to that, from the values in the last row of Table 3.2, we 
ansee that the inner iteration pro
ess 
onverges, sin
e the spe
tral radii of the (LU)�1Eand (eLeU)�1 eE satisfy the ne
essary and suÆ
ient 
ondition for 
onvergen
e.3.3 Experimental ResultsWe present numeri
al results from the experiments by solving sparse matri
es withour algorithms and some pre
onditioners. The pre
onditioned iterative solver weemployed was GMRES(20), with ILU type pre
onditioners, ILU(0) and ILUT [54℄.For all linear systems, the right-hand side was generated by assuming that the solutionis a ve
tor of all ones. The initial guess was a zero ve
tor. We set the iteration to be31
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terminated when the l2-norm of the initial residual is redu
ed by at least seven ordersof magnitude, or when the number of iterations rea
hes 200. The 
omputations were
arried out in double pre
ision arithmeti
s on a 64-bit Sun-Blade-100 workstationwith a 500 MHz UltraSPARC III CPU and 1 GB of RAM. The set of sparse matri
esTable 3.3: Des
ription of the test matri
es.Matrix Des
ription n nnz 
ondADD32 Computer 
omponent design 32-bit adder 4960 23884 2.1E+02BFW398A Bounded Finline Diele
tri
 Waveguide 398 3678 7.6E+03CDDE1 Model 2-D Conve
tion Di�usion Operatorp1=1, p2=2, p3=30 961 4681 4.1E+03CDDE3 Model 2-D Conve
tion Di�usion Operatorp1=1, p2=2, p3=80 961 4681 1.0E+04HOR 131 Flow network problem 434 4710 1.3E+05JPWH991 Cir
uit physi
s modeling 991 6027 7.3E+02LOP163 LOPSI Sto
hasti
 Test Matrix 163 935 3.4E+07MHD3200B Alfven Spe
tra in Magneto hydrodynami
s 3200 18316 2.0E+13MHD416B Alfven Spe
tra in Magneto hydrodynami
s 416 2312 5.1E+09MHD4800B Alfven Spe
tra in Magneto hydrodynami
s 4800 27520 1.0E+14ORSIRR1 Oil reservoir simulation - generated problems 1030 6858 1.0E+02ORSIRR2 Oil reservoir simulation - generated problems 886 5970 1.7E+05ORSREG1 Oil reservoir simulation - generated problems 2205 14133 1.0E+02PDE225 Partial Di�erential Equation 225 1065 1.0E+02PDE2961 Partial Di�erential Equation 2961 14585 9.5E+02PDE900 Partial Di�erential Equation 900 4380 2.9E+02PORES2 Reservoir modeling Reservoir simulation 1224 9613 3.3E+08PORES3 Reservoir modeling Reservoir simulation 532 3474 6.6E+05SAYLR1 Saylor's petroleum engineering/reservoirsimulation matri
es 238 1128 1.6E+09SAYLR4 Saylor's petroleum engineering/reservoirsimulation matri
es 3564 22316 1.0E+02SHERMAN1 Oil reservoir simulation 
hallenge matri
es 1000 3750 2.3E+04SHERMAN4 Oil reservoir simulation 
hallenge matri
es 1104 3786 7.2E+03SHERMAN5 Oil reservoir simulation 
hallenge matri
es 3312 20793 3.9E+05WATT1 Petroleum engineering 1856 11360 5.4E+09that we used for our experiments are from the Harwell-Boeing Sparse Matrix TestColle
tion [29℄. A brief des
ription of ea
h matrix of the experiment set is given inTable 3.3. In the table, the order, the number of nonzero entries, and the 
onditionnumber of the matrix are denoted by n, nnz, and 
ond; respe
tively. All tested32
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matri
es do not have zero diagonals and the ILU fa
torizations are stable.Pre
onditioning with Error Compensation StrategiesNumeri
al experiments of testing the error 
ompensation algorithm with di�erentimplementations are presented. ILU(0) and ILUT pre
onditioners are used. In ILUT,we 
hose the dropping toleran
e and �ll-in parameter to be 0.1 and 5, respe
tively,for all test problems.Table 3.4 reports the number of pre
onditioned GMRES (PGMRES) iterationswith and without di�erent error 
ompensation strategies. The data in the 
olumnsmarked \No" are those of the standard pre
onditioning strategy, i.e., no error 
om-pensation strategy was used. The 
olumns marked \Full" indi
ate that both the Land the U parts were 
ompensated. Similarly, the 
olumns marked \Upart" meansthat only the U part was 
ompensated, and the 
olumns marked \Lpart" means thatonly the L part was 
ompensated. The value \-1" in the table indi
ates the failure of
onvergen
e within the maximum number (200) of allowed iterations.Table 3.4: Comparison of the number of PGMRES iterations with and without dif-ferent error 
ompensation strategies.ILU(0) ILUTMatrix No Full Upart Lpart No Full Upart LpartADD32 81 39 40 40 16 15 -1 15BFW398A -1 150 -1 196 -1 -1 -1 -1HOR131 -1 183 -1 -1 -1 -1 -1 -1JPWH991 29 20 24 24 32 21 25 24LOP163 -1 88 98 176 18 19 18 19MHD3200B 5 4 4 4 164 33 76 101MHD416B 4 4 4 4 137 32 63 77MHD4800B 4 3 4 3 148 33 76 107PDE225 30 16 21 22 16 11 15 13PDE2961 -1 91 103 126 85 66 74 77PDE900 61 46 53 55 33 22 30 27SHERMAN1 116 62 76 75 107 87 -1 94SHERMAN4 143 107 124 128 136 101 117 116SHERMAN5 101 73 77 98 -1 145 -1 169WATT1 178 114 115 95 108 85 94 121
33
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Ea
h 
olumn of Table 3.4 shows the number of PGMRES iterations. The numberof (pre
onditioned) iterations, espe
ially for solving the matri
es ADD32, BFW398A,HOR131, LOP163, PDE2961, SHERMAN1, SHERMAN5, and WATT1, are greatlyredu
ed with the error 
ompensation strategies in the ILU(0) pre
onditioner, 
om-pared with the standard pre
onditioner ILU(0). In addition, the number of iterationsfor solving the matri
es MHD and SHERMAN5 are redu
ed with the error 
ompen-sation strategies in ILUT, 
ompared with the standard pre
onditioner ILUT.
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(a) PDE2961 Matrix with ILU(0) (b) MHD3200B Matrix with ILUTFigure 3.1: The 
onvergen
e 
urves for the PDE2961 and MHD3200B matri
es.We 
an see that for most of the test matri
es, the use of the error 
ompensationstrategies redu
es the number of PGMRES iterations. Furthermore, the full error
ompensation strategy is shown to be more robust than both the L part and the Upart partial error 
ompensation strategies. For the two partial error 
ompensationstrategies, their performan
e seems to be 
omparable. In order to provide betterunderstanding of this, we present Figure 3.1 that shows the PGMRES 
onvergen
ebehavior for PDE2961 and MHD3200B matri
es. This represents 
omparisons of thenumber of PGMRES iterations of PDE2961 and MHD3200B matri
es with ILU(0)and ILUT, respe
tively, along with and without the error 
ompensation strategies.Table 3.5 presents the total CPU pro
essing time whi
h in
ludes the pre
ondi-34
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Table 3.5: Comparison of CPU time in se
onds with the di�erent error 
ompensationstrategies. ILU(0) ILUTMatrix No Full Upart Lpart No Full Upart LpartADD32 1.1E+00 1.0E+00 9.9E-01 9.8E-01 1.2E+00 1.2E+00 N/A 1.1E+00BFW398A N/A 1.9E-01 N/A 1.9E-01 N/A N/A N/A N/AHOR131 N/A 2.1E-01 N/A N/A N/A N/A N/A N/AJPWH991 7.0E-02 8.9E-02 7.9E-02 7.9E-02 1.1E-01 1.5E-01 1.3E-01 1.3E-01LOP163 N/A 2.9E-02 3.9E-02 5.0E-02 6.0E-02 2.9E-02 4.9E-02 5.0E-02MHD3200B 1.8E-01 2.0E-01 2.2E-01 2.1E-01 8.8E-01 4.0E-01 5.9E-01 6.9E-01PDE225 1.9E-02 2.9E-02 1.9E-02 3.9E-02 1.9E-02 2.9E-02 1.9E-02 4.9E-02PDE2961 N/A 5.6E-01 5.8E-01 7.1E-01 1.2E+00 1.4E+00 1.3E+00 1.4E+00SHERMAN1 1.5E-01 1.1E-01 1.1E-01 1.2E-01 2.4E-01 1.9E-01 N/A 2.1E-01WATT1 5.1E-01 4.9E-01 4.3E-01 3.9E-01 7.7E-01 7.7E-01 6.9E-01 7.4E-01tioner 
onstru
tion time with di�erent error 
ompensation strategies. The listedresults in Table 3.5 are 
on
erned with the results listed in Table 3.4. \N/A" in-di
ates the failure of 
omputation sin
e the number of GMRES iteration rea
hedthe maximum number (200). The total CPU time for solving the matri
es (ADD32,BFW398A, HOR131, LOP163, MHD3200B, PDE2961, SHERMAN1, and WATT1)is redu
ed by using the error 
ompensation strategies with ILU(0)/ILUT. This im-plies that as the number of overall iterations are greatly de
reased, the CPU time isalso redu
ed even though we need extra pro
essing time for implementing the error
ompensation strategies.Pre
onditioning with Inner-Outer Iteration StrategiesIn this subse
tion, we present numeri
al experiments of the inner-outer iterationstrategy with di�erent settings of the number of inner iterations. Table 3.6 reports thenumber of pre
onditioned GMRES (PGMRES) iterations with respe
t to ea
h setting.The data in the 
olumns marked \1-Its" are those of the standard pre
onditioningstrategy, i.e., no additional iteration beyond the standard pre
onditioning pro
edurewas used, whereas ea
h 
olumn marked with from \2-Its" to \4-Its" indi
ates inner35
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iteration steps of 2 to 4, respe
tively, that are performed at ea
h pre
onditioningstep. Also, the value \-1" in the table denotes the failure of 
onvergen
e within themaximum number (200) of allowed iterations.Table 3.6: Comparison of the number of PGMRES iterations with di�erent numberof inner iterations. ILU(0) ILUTMatrix 1-Its 2-Its 3-Its 4-Its 1-Its 2-Its 3-Its 4-ItsADD32 81 38 43 27 16 9 7 6BFW398A -1 117 116 50 -1 -1 -1 -1JPWH991 29 15 13 10 32 18 13 11LOP163 -1 110 98 66 18 8 7 5ORSIRR1 41 22 20 16 50 25 30 17PDE225 30 16 10 8 16 8 7 5PDE900 61 31 18 15 33 16 11 9SHERMAN1 116 52 57 32 107 50 47 30SHERMAN4 143 65 46 33 136 60 36 26SHERMAN5 101 54 39 29 -1 87 72 57WATT1 178 66 53 36 108 49 39 31Table 3.6 shows that the inner-outer iteration strategies redu
e the number ofPGMRES iterations for most of the tested matri
es. Espe
ially, ILU(0) with theinner-outer iteration strategies is shown to be e�e
tive for solving ADD32, BFW398A,LOP163, PDE225, PDE900, SHERMAN, and WATT1 matri
es. ILUT with di�erentnumber of inner-outer iteration strategies works well on the PDE and SHERMANmatri
es.Figure 3.2 shows that the number of PGMRES iterations is de
reased as the num-ber of inner iterations is in
reased for solving the LOP163 and SHERMAN5 matri
es.In the �gure, \ILU(0)" and \ILUT" denote the standard ILU(0) and ILUT pre
ondi-tioner, respe
tively. Also, \2-Its," \3-Its," and \4-Its" represent the pre
onditionerswith inner iteration steps of 2, 3, and 4, respe
tively.In Table 3.7, we 
ompare the total CPU pro
essing time in se
onds with andwithout the inner-outer iteration strategies. In general, larger number of inner iter-ations redu
es the number of outer iterations needed for 
onvergen
e. However, theredu
tion of the number of outer iterations does not always lead to the redu
tion of36
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(a) The LOP163 matrix with ILU(0) (b) The SHERMAN5 matrix with ILUTFigure 3.2: The 
onvergen
e 
urves for the LOP163 and SHERMAN5 matri
es.Table 3.7: Comparison of CPU time in se
onds of ILU(0) and ILUT with di�erentnumber of inner iterations. ILU(0) ILUTMatrix 1-Its 2-Its 3-Its 4-Its 1-Its 2-Its 3-Its 4-ItsADD32 1.1E+00 1.1E+00 1.4E+00 1.2E+00 1.2E+00 1.2E+00 1.5E+00 1.3E+00BFW398A N/A 1.7E-01 2.4E-01 1.6E-01 N/A N/A N/A N/AJPWH991 7.0E-02 7.0E-02 8.9E-02 7.0E-02 1.1E-01 1.1E-01 1.3E-01 1.2E-01LOP163 N/A 4.9E-02 5.9E-02 3.9E-02 6.0E-02 4.9E-02 7.0E-02 3.9E-02ORSIRR1 9.0E-02 1.3E-01 1.1E-01 1.2E-01 1.4E-01 1.7E-01 1.7E-01 1.7E-01PDE225 1.9E-02 1.9E-02 1.9E-02 1.9E-02 1.9E-02 2.9E-02 2.9E-02 2.9E-02SHERMAN1 1.5E-01 1.0E-01 1.3E-01 1.2E-01 2.4E-01 1.7E-01 2.1E-01 1.8E-01WATT1 5.1E-01 3.9E-01 3.7E-01 3.6E-01 7.7E-01 5.9E-01 5.9E-01 5.8E-01the total CPU time, as shown in Table 3.7. This is be
ause that the 
ost of employ-ing more inner iterations sometimes outweighs the savings obtained in the redu
tionof the number of outer iterations, as ea
h outer iteration be
omes more expensiveto 
ondu
t. For the purpose of maintaining robustness, however, two or three inneriterations may be used in ea
h outer iteration.
37
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Comprehensive Results: Comparisons between Error Compensation andInner-Outer Iteration StrategiesIn this se
tion, we show the 
omparison of the number of PGMRES iterations withdi�erent enhan
ed pre
onditioning strategies. The inner-outer iteration strategy isimplemented with two inner iterations in this 
omparison.Table 3.8: Comparison of the number of PGMRES iterations with and without dif-ferent error 
ompensation strategies.ILU(0) ILUTMatrix No Full 2-Its Both BothL No Full 2-Its Both BothLBFW398A -1 150 117 81 88 -1 -1 -1 -1 -1CDDE1 -1 102 94 55 77 164 102 66 44 54CDDE3 -1 -1 -1 185 -1 -1 -1 196 198 175ORSIRR1 41 40 22 22 22 50 41 25 22 25ORSIRR2 40 41 22 22 22 51 43 25 24 25ORSREG1 51 50 22 24 25 52 52 26 22 25PDE2961 -1 -1 -1 -1 -1 85 66 51 31 47PDE900 61 46 31 22 27 33 22 16 16 15PORES2 117 148 -1 -1 82 -1 -1 -1 -1 -1PORES3 108 64 52 44 54 121 127 88 53 82SAYLR1 33 33 16 16 15 75 -1 24 31 24SAYLR4 -1 -1 185 163 -1 -1 -1 -1 187 -1SHERMAN1 116 62 52 43 52 107 87 50 51 50SHERMAN4 143 107 65 43 55 136 101 60 43 37SHERMAN5 101 73 54 44 50 -1 145 87 76 79WATT1 178 114 66 40 69 108 85 49 37 49Table 3.8 shows the 
omparison of the number of PGMRES iterations with dif-ferent enhan
ed pre
onditioning strategies. The data in the 
olumns marked \Both"and \BothL"mean that applying \Full" and \Lpart" followed by \2-Its". The datain the Table 3.8 indi
ate that most of the proposed strategies are of bene�t to redu
ethe number of PGMRES iterations, and show that \Both" (the error 
ompensationstrategy with the L and U parts followed by the inner-outer iteration strategy) hasbest results for almost all tested matri
es; 12 (8) matri
es have best results with the\Both," and 3 (2) matri
es with the \2-Its" (inner-outer iteration strategy), in the
ontext of ILU(0) (ILUT). Also, \BothL" (the error 
ompensation strategy with the38
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L part only followed by the inner-outer iteration strategy) is best to 4 (5) matri
eswith ILU(0) (ILUT), respe
tively.Spe
i�
ally, Table 3.8 indi
ates that most of the proposed strategies are of bene�tto redu
e the number of PGMRES iterations. In the 
ontext of ILU(0), 13 matri
eshave best results with the inner-outer iteration strategy, and 8 matri
es with the error
ompensation strategies. However, the error 
ompensation strategy with the L partonly is also best for 4 matri
es in the sense of the least number of GMRES iterationsonly. In the 
ontext of ILUT, 13 matri
es have best results with the inner-outeriteration strategy, and 5 matri
es with the error 
ompensation strategy. As a result,the error 
ompensation strategy followed by the two inner-outer iteration strategyoutperformed the other error 
ompensation strategies based on this experiment.Table 3.9: Comparison of CPU time in se
onds with the di�erent error 
ompensationstrategies in ILU(0) pre
onditioning. ILU(0)Matrix No Full 2-Its Both BothLBFW398A N/A 1.9E-01 1.7E-01 1.9E-01 1.6E-01CDDE1 N/A 1.6E-01 2.1E-01 1.5E-01 1.8E-01CDDE3 N/A N/A N/A 3.4E-01 N/AORSIRR1 9.0E-02 1.3E-01 1.3E-01 1.4E-01 1.5E-01ORSIRR2 8.9E-02 1.1E-01 9.9E-02 1.2E-01 1.1E-01ORSREG1 2.6E-01 3.9E-01 2.7E-01 3.3E-01 3.1E-01PDE2961 N/A N/A N/A N/A N/APDE900 9.0E-02 1.0E-01 8.9E-02 9.0E-02 8.9E-02PORES2 2.7E-01 4.5E-01 N/A N/A 3.9E-01PORES3 7.9E-02 7.9E-02 9.0E-02 1.0E-01 1.0E-01SAYLR1 2.9E-02 1.9E-02 1.9E-02 2.9E-02 1.9E-02SAYLR4 N/A N/A 2.1E+00 2.4E+00 N/ASHERMAN1 1.5E-01 1.1E-01 1.0E-01 1.1E-01 1.2E-01SHERMAN4 1.6E-01 1.6E-01 1.3E-01 1.2E-01 1.4E-01SHERMAN5 6.9E-01 7.4E-01 7.3E-01 7.7E-01 7.6E-01WATT1 5.1E-01 4.9E-01 3.9E-01 3.4E-01 4.5E-01Table 3.9 and Table 3.10 present the total CPU pro
essing time whi
h in
ludes thepre
onditioner 
onstru
tion time with di�erent error 
ompensation strategies. Thelisted results in Table 3.9 and Table 3.10 are 
on
erned with the results listed inTable 3.8. \N/A" indi
ates the failure of 
omputation sin
e the number of GMRES39
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Table 3.10: Comparison of CPU time in se
onds with the di�erent error 
ompensationstrategies in ILUT pre
onditioning. ILUTMatrix No Full 2-Its Both BothLBFW398A N/A N/A N/A N/A N/ACDDE1 3.6E-01 2.7E-01 3.2E-02 2.4E-01 2.8E-01CDDE3 N/A N/A 5.9E-01 6.8E-01 6.4E-01ORSIRR1 1.4E-01 1.9E-01 1.7E-01 2.0E-01 2.0E-01ORSIRR2 1.3E-01 1.7E-01 1.4E-01 1.7E-01 1.6E-01ORSREG1 3.9E-01 5.8E-01 3.9E-01 4.7E-01 4.4E-01PDE2961 1.2E+00 1.3E+00 1.4E+00 1.6E+00 1.6E+00PDE900 1.2E-01 1.4E-01 1.3E-01 1.4E-01 1.4E-01PORES2 N/A N/A N/A N/A N/APORES3 1.4E-01 1.6E-01 1.6E-01 1.6E-01 1.8E-01SAYLR1 3.9E-02 N/A 2.9E-02 3.9E-02 2.9E-02SAYLR4 N/A N/A N/A 4.2E+00 N/ASHERMAN1 2.4E-01 1.9E-01 1.7E-01 1.9E-01 1.2E-01SHERMAN4 2.9E-01 2.8E-01 2.2E-01 2.0E-01 2.0E-01SHERMAN5 N/A 1.6E+00 1.3E+00 1.5E+00 1.4E+00WATT1 7.7E-01 7.7E-01 5.9E-01 5.6E-01 6.9E-01iterations rea
hed the maximum number(200). This implies that as the number ofoverall iterations are greatly de
reased, and the CPU time is also redu
ed even thoughwe need extra pro
essing time for implementing the error 
ompensation strategies.3.4 Con
lusions and RemarksWe proposed pre
onditioning a

ura
y enhan
ement strategies to augment ILU (in-
omplete LU) fa
torizations in 
ase that the initial fa
torizations are found to beina

urate. The strategies re
ompense the dropped elements during the in
ompletefa
torization before/during the pre
onditioned iteration pro
esses. Results of ex-tensive numeri
al experiments demonstrated that the proposed strategies are quitepromising and e�e
tive in helping redu
e the number of PGMRES iterations, and anoti
eable improvement in enhan
ing the a

ura
y of ILU fa
torizations. Further-more, the total 
omputation time for solving sparse linear system was redu
ed inmany 
ases even though extra pro
essing time was used for the proposed strategies.
40
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Chapter 4 Hybrid Reordering Strategies
In
omplete LU fa
torization pre
onditioning te
hniques often 
ause pre
onditionersto be unstable and/or ina

urate due to very small pivots en
ountered during thefa
torization in solving inde�nite matri
es. In this 
hapter, we 
on
ern ourselves withimproving the stability and a

ura
y of pre
onditioners in solving inde�nite matri
esusing two diagonal reordering algorithms that repla
e small pivots with large valueson the main diagonal by sear
hing for entries of a single nonzero element and/ormaximum absolute value.4.1 Introdu
tionIn
omplete LU (ILU) pre
onditioning te
hniques have been su

essful for solvingmany symmetri
 and nonsymmetri
 matri
es, however, they may en
ounter diÆ
ultywhen the matrix to be solved is inde�nite, i.e., when the matrix has both positiveand negative eigenvalues (See Figure 4.1 for the examples of inde�nite matri
es). Ifmatrix A has positive and negative eigenvalues, M�1A attempts to move negativeeigenvalues to the positive side and to be 
lustered around 1. But an unsu

essfulpre
onditioning may move some of the eigenvalues to be 
lose to 0, whi
h 
ausesM�1A to have a very large 
ondition number.A

ording to Chow and Saad [19℄, there are at least two reasons whi
h make ILUfa
torization approa
hes diÆ
ult in solving inde�nite matri
es. The �rst reason 
anbe due to small or zero pivots in an inde�nite matrix, whi
h may lead to unstableand ina

urate fa
torizations [44℄. In addition, small pivots are usually related tosmall or zero entries on the main diagonal of the matrix, so an inde�nite matrixwith zero diagonal entries may have higher 
han
es of en
ountering zero pivots ifthe matrix is also nonsymmetri
 [54, 68℄. Se
ondly, unstable triangular solutions 
an42
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(a) MAHINDAS Matrix

(b) SHL 400 MatrixFigure 4.1: The MAHINDAS and SHL 400 matri
es [50℄.happen when jjL�1jj and jjU�1jj are extremely large while the o�-diagonal elementsof L and U are reasonably bounded. Su
h problems are usually 
aused by very smallpivots [19, 34, 68℄.Sin
e small pivots are often the origin of stability problems in 
omputing ILU fa
-torization on an inde�nite matrix, we 
an expe
t a better performan
e if small pivots
ould be repla
ed with some large values on the diagonal of the matrix. Based on theidea mentioned above, several resear
hers [10, 27, 28, 30, 31℄ fo
used on permutinglarge entries onto the main diagonal of an inde�nite matrix before using dire
t or43
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iterative solvers to solve the matrix. For example, Du� and Koster [30, 31℄ exploitedbipartite mat
hing algorithms and s
aling te
hniques for 
omputing permutations ofa sparse matrix. Their reordering and s
aling algorithms have an e�e
t on the perfor-man
e of various solution methods for solving sparse matri
es. In the experimentalstudies with the Du� and Koster's [31℄ algorithms, Benzi et al. [10℄ 
onsidered mat
h-ing algorithms su
h as maximum transversal, maximum produ
t transversal, and thebottlene
k transversal with symmetri
 permutations. Their prepro
essing step stillrequires 
ompli
ated mat
hing algorithms with several symmetri
 permutations.As a part of the 
ontinuous e�orts to develop approa
hes to repla
e small pivotswith large values on the main diagonal, we present two diagonal reordering algorithmsthat are 
omputationally inexpensive but eÆ
ient in the aspe
t of reordering perfor-man
e for inde�nite matri
es, and also propose new hybrid reordering strategies thatare 
omposed of a 
ombination of the two proposed diagonal reorderings and thenonde
reasing degree algorithm [68℄ des
ribed in Se
tion 4.2.The main idea of the diagonal reordering algorithms lies on sear
hing for entries of(1) single nonzero element and/or (2) the maximum absolute value, to be pla
ed onthe main diagonal for 
omputing a nonsymmetri
 permutation. Single-Element-Reordering des
ribed in Algorithm 4.2.2 examines the rows and the 
olumns whi
hhave only one nonzero element for the permutation so that the main diagonal ofthe permuted matrix has more nonzero entries than the original one. On the otherhand,Maximum-Value-Reordering des
ribed in Algorithm 4.2.3 sear
hes for theentries, whi
h have the maximum absolute value for ea
h 
olumn for the permutation,to maximize the absolute value on the diagonal entries for ea
h 
olumn.In order to augment the e�e
tiveness of the nonsymmetri
 diagonal reorderings,we apply a symmetri
 nonde
reasing degree algorithm to redu
e the amount of �ll-induring the ILU fa
torization. This algorithm is used to reorder the rows of the matrixin a de
reasing degree fashion; i.e., the rows with smaller degrees are listed �rst and44
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those with larger degrees are listed last [68℄. It will be de�ned later.In Se
tion 4.3, we present the numeri
al results to demonstrate the performan
eof ea
h reordering strategy. A set of sparse inde�nite matri
es were used in the ex-periments. We �rst performed ea
h reordering strategy as a prepro
essing step. Inorder to solve the reordered matri
es, we employed several ILU type pre
onditionersand a pre
onditioned iterative solver. The 
omparison fa
tors derived from solvingthe reordered matri
es were nonzero entries on the main diagonal, the number ofiterations, the amount of �ll-in in the pre
onditioners, and a pre
onditioner 
ondi-tioning estimate parameter. As a result, we 
an see that the 
onvergen
e 
ost of thepre
onditioned Krylov subspa
e methods on solving the reordered inde�nite matri
esis markedly redu
ed by using our reordering strategies.4.2 Hybrid Reordering StrategyLet A be an inde�nite matrix, and P = f(i; j) j i = j; 1 � i; j � ng be the set ofpairs for a permutation, where n is the order of the matrix A, and (i; j) means tointer
hange rows i and j of the matrix A.Algorithm 4.2.1. Verify-Permutation(A; i; k; d).1. r  FALSE2. bk  Count-Nonzeros(A; i; d)3. 
  Che
k-Pair(P; i; d)4. If ( (k = bk) ^ (
 = TRUE) )5. r  TRUE6. Return rWe des
ribe the Verify-Permutation(A; i; k; d) fun
tion in Algorithm 4.2.1to determine a permutation, where d is the dire
tion (ROW or COL; i.e., row-wise or
olumn-wise), i is the index for the dire
tion d, and k is the number of nonzero45
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elements to be 
ompared. In line 2, the Count-Nonzero(A; i; d) fun
tion 
ountsthe number of nonzero elements in the i-th of the dire
tion d (row or 
olumn). Inline 3, the Che
k-Pair(P; i; d) fun
tion determines whether the pair (i; d) is usedfor the permutation set P . At last, line 4 veri�es whether the given position on thematrix A 
an be a member of the set P .Single-Element-ReorderingAlgorithm 4.2.2. Single-Element-Reordering.1. For i = 1; :::; n2. If (Verify-Permutation(A, i, 1, ROW) = TRUE )3. j  Find the 
olumn index of the nonzero element in row i.4. Repla
e (i; i) with (i; j) in P5. For i = 1; :::; n6. If (Verify-Permutation(A, i, 1, COL) = TRUE)7. j  Find the row index of the nonzero element in 
olumn i.8. Repla
e (j; j) with (j; i) in P .Algorithm 4.2.2 des
ribes the Single-Element-Reordering algorithm that�nds rows and 
olumns whi
h have only one nonzero element for the permutation.The main role of this algorithm is to in
rease the number of nonzero elements on thediagonal. The number of elements in a row or in a 
olumn 
an be 
omputed veryinexpensively if we use the 
ompressed sparse row (or 
olumn) format. Sin
e bothrows and 
olumns are needed, the most eÆ
ient implementation needs the matrixto be stored in both formats. We 
an temporarily use the storage spa
e allo
atedfor the pre
onditioner to be used in a later phase to store an additional 
opy ofthe matrix in another format. With the availability of both rows and 
olumns, theSingle-Element-Reordering algorithm 
osts O(n) nonnumeri
al operations. It46
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is 
omputationally more eÆ
ient than the maximum transversal algorithm [10, 30, 31℄,whi
h is O(n � q), where q is the number of nonzero entries of the matrix.Maximum-Value-ReorderingAlgorithm 4.2.3. Maximum-Value-Reordering.1. �  02. For i = 1; :::; n3. bk  Count-Nonzeros(A; i; d)4. If (� < bk ) �  bk5. For k = 2; :::; �6. For i = 1; :::; n7. If (Verify-Permutation(A, i, k, COL)=TRUE )8. j  Find the row index of the maximum value element in 
olumn i.9. Repla
e (j; j) with (j; i) in P .As des
ribed in Algorithm 4.2.3, the Maximum-Value-Reordering algorithmsear
hes for an element whi
h has the maximum absolute value in ea
h 
olumn fora permutation to pla
e that entry on the diagonal of ea
h 
olumn of the matrix. Inlines 1-4, we �nd the maximum number � of nonzero elements in the 
olumns. In line8, the algorithm �nds the maximum absolute value in the 
olumns takes O(n) time.Thus, it is obvious that the time 
omplexity of Maximum-Value-Reordering isO(n2 � �) = O(n � q), where � is the maximum number of nonzero elements in a
olumn.Du� and Koster [30, 31℄, and Benzi et al. [10℄ 
onsider the maximum produ
ttransversal whi
h the produ
t of the absolute value of the entries on the diagonal ismaximized with a 
omplexity O(n � q � logn). Sin
e the matri
es under our 
onsid-eration are very sparse, � is smaller than logn and n � q. The Maximum-Value-47
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Reordering algorithm is also more eÆ
ient in terms of time 
omplexity than themaximum produ
t transversal [10, 31℄.Nonde
reasing Degree AlgorithmWe denote by deg(vi) the degree of the node (row) vi, whi
h equals the number ofnonzero elements of the i-th row minus one, i.e., deg(vi) = Nz(Ai)� 1 = Nz(vi)� 1,where Nz(Ai) represents the number of nonzero elements in row i of a matrix A. Tobe more pre
ise, we reorder the nodes in a de
reasing degree fashion; i.e., the nodeswith smaller degrees are listed �rst and those with larger degrees are listed last. Thepurpose of the nonde
reasing degree reordering strategy is to redu
e the �ll-in duringthe ILU fa
torization [67℄.4.3 Experimental ResultsWe present numeri
al experiments of the reordering strategies in this se
tion. Thepre
onditioned iterative solver, GMRES(20), was employed with several ILU typepre
onditioners, ILU(0), MILU(0), ILUT, and ILUTP. For all linear systems, theright-hand side was generated by assuming that the solution is a ve
tor of all ones.The initial guess was a zero ve
tor. The iteration was set to terminate when thel2-norm of the initial residual was redu
ed by at least seven orders of magnitude, orwhen the number of iterations rea
hed 500.Des
ription of Test Matri
esThe test sparse matri
es for experiments were unsymmetri
 matri
es from the Harwell-Boeing sparse matrix test 
olle
tion [29℄ and the sparse matrix 
olle
tion at the Uni-versity of Florida [24℄. A short des
ription of the matri
es is given in Table 4.1.In all tables with numeri
al results, SER, MVR, and SMR represent Single-Element-Reordering, Maximum-Value-Reordering, and SER followed by48
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Table 4.1: Des
ription of the test matri
es.Name Des
riptionMAHINDAS E
onomi
 model of Vi
toria, Australia, 1880 dataOLM1000 The OLMstead model represents the 
ow of a layerof vis
oelasti
 
uidOLM5000 The OLMstead model represents the 
ow of a layerof vis
oelasti
 
uidSHL 0 Simplex method basis matrixSHL 200 Simplex method basis matrixSHL 400 Simplex method basis matrixFPGA DCOP 03 Cir
uit simulation matri
esFPGA DCOP 07 Cir
uit simulation matri
esFPGA TRANS 01 Cir
uit simulation matri
esFPGA TRANS 02 Cir
uit simulation matri
esINIT ADDER1 Cir
uit simulation matri
esSHERMANACa Matri
es from Kai Shen, UCSBSHERMANACd Matri
es from Kai Shen, UCSBADDER DCOP 15 Cir
uit simulation matri
esMEG4 Primarily 
hemi
al pro
ess simulation matri
esMVR algorithm, respe
tively.Comparisons of Reordering StrategiesThe 
omparisons of nonzero entries on the diagonal and the number of GMRESiterations with the reordering strategies are presented. For simpli
ity, n; nnz; org;and nnzD(org) denote the dimension of the matrix, the number of nonzero entriesin the original matrix, the original matrix, and the number of nonzero entries on thediagonal of the original matrix, respe
tively.Table 4.2 reports that in most 
ases, the reordering strategies pla
e more nonzeroentries on the diagonal than those of the original matrix. For example, the matri
esSHL 0, SHL 200, and SHL 400 have 5, 6, and 3 nonzero diagonal entries (nnzD) inoriginal matri
es, and nnzD of the ea
h matrix was in
reased 406, 360, and 353 withSER, and 663, 645, and 641 nonzero with SMR, respe
tively. For the SHL 0 matrix,all diagonal entries be
ome nonzero with SMR. We note that nnzD of some matri
esare redu
ed with MVR and SMR, but su
h losses are seen as minor be
ause thenumber of GMRES iterations are de
reased 
ompared to those of original matrix. In49
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Table 4.2: Comparison of nonzero entries on diagonal.Name n nnz nnzD(org) nnzD(SER) nnzD(MVR) nnzD(SMR)MAHINDAS 1258 7682 106 519 907 1152OLM1000 1000 3996 1000 1000 352 1000OLM5000 5000 19996 5000 5000 366 5000SHL 0 663 1687 5 406 352 663SHL 200 663 1726 6 360 366 645SHL 400 663 1712 3 353 371 641FPGA TRANS 01 1220 7382 1154 1220 1158 1220FPGA TRANS 02 1220 7382 1154 1220 1158 1220SHERMANACa 3432 25220 3432 3432 3408 3432SHERMANACd 6136 53329 6136 6136 6110 6130ADDER DCOP 15 1813 11246 1801 1813 1786 1797MEG4 5860 46842 5806 5860 5806 5860the 
ase of \SHERMANACd," the number of nonzero diagonal entries of the matrix isredu
ed from 6136 to 6130 with SMR reordering, but the failure of 
onvergen
e resultof the matrix is 
hanged to 
onvergen
e with 83 GMRES iterations (See Table 4.3).Table 4.3: Comparison of the number of iterations.Name � p pre
ond org ND SER-ND MVR-ND SMR-NDMAHINDAS 10�3 15 ILUTP 12(U) 12 12 11 6OLM1000 10�2 5 ILUT -1 -1 -1 -7 19OLM5000 10�2 5 ILUT -1 -1 -1 -7 19SHL 0 ILU(0) -7 -7 -7 -7 7SHL 0 10�4 5 ILUT -3 -3 -1 -7 2SHL 200 10�5 10 ILUT -3 -3 -3 -1 31SHL 400 10�3 10 ILUT -3 -3 -3 -1 53FPGA TRANS 01 ILU(0) -7 -7 105 -7 105FPGA TRANS 02 ILU(0) -7 -7 105 -7 105SHERMANACa 10�3 5 ILUT -3 -3 -3 -1 9SHERMANACd 10�6 15 ILUT -3 -3 -3 -1 83ADDER DCOP 15 ILU(0) -7 -7 299 -7 -7MEG4 ILU(0) -7 -7 7 -7 7In Table 4.3, we present 
omparison results of the number of pre
onditioned GM-RES iterations with the reordering strategies. We have tested SER, and SMR fol-lowed by a symmetri
 nonde
reasing degree (ND) permutation, denoted \SER-ND"and \SMR-ND," respe
tively, to redu
e �ll-in in the pre
onditioner. The \�" and\p" 
olumns in Table 4.3 are the two dropping parameters used in the ILUT fa
-50
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torization, and the \pre
ond" 
olumn spe
i�es the parti
ular pre
onditioners. Thevalue \-1" and \-3" indi
ate the failure of 
onvergen
e within the maximum number(500) of allowed iterations and with the breakdown of the GMRES solver, respe
-tively, and \-7" indi
ates that the pre
onditioner was not 
onstru
ted due to zeroson the main diagonal (zero pivot). The symbol \U" denotes failure due to unstablepre
onditioning result, whi
h only happened with the original \MAHINDAS" matrix,and the 
omputed results are not reliable although the pre
onditioned solver stoppedat 12 iterations. Overall, SMR seems to be the most robust sin
e it helped the ILUpre
onditioners solve all but one matrix used in the experiments.Table 4.4: Comparison of the number of nonzero entries.Name pre
ond org ND SER-ND SMR SMR-NDMAHINDAS ILUTP 20234 9374 9087 25864 9520OLM1000 ILUT 2000 2000 2000 1997 1997OLM5000 ILUT 9997 9997 9997 9997 9997SHL 0 ILUT 3946 3647 2857 1898 1409SHL 200 ILUT 5839 5707 5399 2568 1970SHL 400 ILUT 5885 5353 5120 2589 1967FPGA DCOP 03 ILUT 9174 4837 4189 8483 4189FPGA DCOP 07 ILUT 9339 4713 4106 8514 4106INIT ADDER1 ILUTP 22679 8841 8833 27586 9110SHERMANACa ILUT 42094 43395 43395 29163 23277SHERMANACd ILUT 191446 165574 362596 231520 84770As shown in Table 4.4, we 
ompare the number of nonzero entries in the pre
on-ditioners with SER and SMR followed by the ND algorithm with the same droppingtoleran
e parameters as listed in Table 4.3. We 
an see that the nonde
reasing degreestrategy redu
es the number of �ll-in entries during the ILUT and ILUTP fa
toriza-tions. It is interesting to noti
e that for the most matri
es in
luding the SHL matri
esand the SHERMAN matri
es, the SMR-ND strategy have the minimum or 
lose tothe minimum amount of nonzero entries.
51
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Computational AnalysisA

ording to Greenbaum and Saad [39, 55℄, the 
onvergen
e behavior of the Krylovsubspa
e methods depends on the distribution of the eigenvalues and on the 
onditionnumber of the 
oeÆ
ient matrix. Based on these theoreti
al fa
ts, we analyze thereordering algorithms by presenting some numeri
al and graphi
al results.For a given (diagonalizable) matrix A; it 
an be de
omposed as A = X�X�1;where � = diagf�1; �2; � � � ; �ng is the diagonal matrix of the eigenvalues and X is thematrix of the eigenve
tors of the matrix A: The 
ondition number of the eigenve
tormatrix X measures the normality of the matrix A; and it 
an be used to explain the
onvergen
e of the Krylov subspa
e methods heuristi
ally [39, 55℄.Table 4.5: The largest and smallest eigenvalues and 
ondition numbers of the MAHIN-DAS matrix.Matrix �largest �smallest 
ond(X)A -6.68E+00 -2.90E-03 + 9.60E-03i 1.08E+07ILUT(A) 4.16E-01 + 2.47E+03i N/A 6.42E+07SMR-ND followed by ILUT 2.52E+06 1.95E-05 1.09E+06Table 4.5 reports the largest and the smallest eigenvalues in magnitude of theoriginal and the pre
onditioned matri
es, and the 
ondition number of the eigenve
tormatri
es in the MAHINDAS matrix. Under \N/A", we represent that the the smallesteigenvalue was not 
omputed. As shown in the table and Figure 4.2 (a), the 
onditionnumber of the eigenve
tor matrix of the original matrix is relatively large, and theMAHINDAS matrix is highly inde�nite.The ILUT pre
onditioner makes the spe
trum more spread around the origin andinde�nite than those of the original matrix in real part (See Figure 4.2 (b)). Thismakes the pre
onditioned matrix have slightly larger 
ondition number of the eigen-ve
tor matrix and 
auses a failed 
onvergen
e of the GMRES method on the ILUTpre
onditioned matrix. On the other hand, in Figure 4.2 (
), the eigenvalues ap-52
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(a) Eigenvalues of the MAHINDAS matrix
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(b) Eigenvalues of the MAHINDAS matrix with ILUT
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(
) Eigenvalues of the MAHINDAS matrix with SMR-ND followed by ILUTFigure 4.2: Plots of the eigenvalues of the MAHINDAS matrix. (These sub�guresare in di�erent s
ale.)plied by the SMR-ND reordering followed by the ILUT pre
onditioner are shifted tothe right-hand side of the origin in real part (positive de�nite). Also, the 
onditionnumber of the eigenve
tor matrix is de
reased. These explain the good 
onvergen
ebehavior of the GMRES method on this reordering followed by the ILUT pre
ondi-53
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tioned matrix.Next, we use some statisti
al information to estimate 
ondition numbers of thepre
onditioned matri
es. In order to estimate the 
ondition number, a statisti
 \
on-dest", suggested by Chow and Saad [19℄, is utilized by 
al
ulating jj(LU)�1ejj1; wheree is the ve
tor of all ones. This statisti
s indi
ates a relation between the unstabletriangular solutions and the poorly 
onditioned L and U fa
tors.Table 4.6: Comparison with 
ondest.Name pre
ond org ND SER-ND SMR SMR-NDMAHINDAS ILUTP Unstable 4:30E + 3 1:61E + 5 1:03E + 6 5:54E + 5OLM1000 ILUT 1:15E + 2 1:12E + 2 1:15E + 2 1:88 1:98OLM5000 ILUT 1:01E + 3 1:01E + 3 1:0E + 3 1:79 1:81SHL 0 ILU(0) N/A N/A N/A 4:71E + 3 4:51E + 3SHL 0 ILUT In�nity In�nity Unstable 5:44E + 3 5:44E + 3SHL 200 ILUT In�nity 1:00 Unstable 3:21E + 13 9:73E + 10SHL 400 ILUT In�nity In�nity Unstable 3:65E + 11 7:19E + 14FPGA DCOP 03 ILUT 1:49E + 12 1:50E + 12 1:50E + 12 1:50E + 12 1:50E + 12FPGA DCOP 07 ILUT 1:50E + 12 1:50E + 12 1:50E + 12 1:50E + 12 1:50E + 12FPGA TRANS 01 ILU(0) N/A N/A 1:92E + 1 4:89E + 2 1:92E + 1FPGA TRANS 02 ILU(0) N/A N/A 1:92E + 1 5:28E + 2 1:92E + 1INIT ADDER1 ILUTP 7:62E + 8 1:23E + 8 1:23E + 8 1:50E + 8 1:23E + 8SHERMANACa ILUT Unstable In�nity In�nity 2:07E + 4 2:07E + 4SHERMANACd ILUT 2:83E + 3 2:83E + 3 2:83E + 3 3:29E + 19 4:67E + 11ADDER DCOP 15 ILU(0) N/A N/A 5:00E + 11 N/A N/AMEG4 ILU(0) N/A N/A 1:97E + 5 1:97E + 5 1:97E + 5The results are listed in Table 4.6, whi
h are 
on
erned with the results listedin Table 4.3. Under \N/A", we report that the pre
onditioner was not de�ned, dueto zeros on the diagonal (zero pivot). Also, \In�nity" and \Unstable" represent theunstable triangular solvers. Here, we use \Unstable" if 
ondest > 1015: The statisti
sof the \
ondest" shows that many matri
es greatly bene�t from the proposed SMRalgorithm in this paper.
54
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4.4 Con
luding RemarksWe have proposed hybrid reordering strategies for an inde�nite matrix A in ILUpre
onditioning te
hniques. The strategies are 
ombinations of the diagonal reorder-ings to 
onstru
t stable pre
onditioner and nonde
reasing degree reordering to redu
e�ll-in numbers. The diagonal reorderings were used to make a matrix in
rease thenumber of the nonzero elements on the diagonal and/or maximize the absolute valueon the diagonal entries. It is also worth mentioning that the strategies run eÆ
ientlyin low 
omputational time 
ost. For the performan
e aspe
t, we showed various ex-perimental results from the proposed reordering strategies. The results demonstratedwere quite promising and e�e
tive in helping 
onstru
t ILU type pre
onditioners forsolving inde�nite sparse matri
es. In addition to that, the 
onvergen
e 
ost of thepre
onditioned Krylov subspa
e methods on solving the reordered inde�nite matri
eswas greatly de
reased.

Copyright 
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Chapter 5 A Two-Phase Pre
onditioning Strategy
In this 
hapter, as a part of the 
ontinuous e�ort on solving inde�nite matri
es, atwo-phase pre
onditioning strategy based on a fa
tored sparse approximate inverse isproposed. This strategy adopted the idea of a shifting method, whi
h adds a numberto the diagonals of an inde�nite matrix, to make the resulting pre
onditioner well
onditioned. Moreover, the two-phase pre
onditioning pro
ess reinfor
es the tradeo�between stability and a

ura
y of the resulting pre
onditioner obtained from theshifting method.5.1 Introdu
tionIn re
ent years, a few pre
onditioning te
hniques in the form of sparse approximateinverse have been developed [9, 16, 18, 20, 37, 38, 41℄. Su
h te
hniques have someadvantages over the 
onventional ILU fa
torizations. Spe
i�
ally, the pro
ess of ap-plying the sparse approximate inverse pre
onditioning te
hniques 
an be performedby the matrix-ve
tor operations, in whi
h the operations are relatively easier to paral-lelize than the triangular solutions asso
iated with the ILU fa
torizations. The sparseinverse pre
onditioning te
hniques may su

eed in solving 
ertain problems where theILU fa
torizations are diÆ
ult to handle [20℄. In addition to that, fa
tored sparseapproximate inverse (FAPINV) in whi
h a sparse approximate inverse has a fa
toredform, tends to perform better in 
onvergen
e rate for the same amount of nonzerosand also requires less 
omputational 
ost than a non-fa
tored form does. However, theresulting approximate inverse 
ould still break down for solving inde�nite matri
esdue to zero or small pivots [9, 69℄.In solving inde�nite matri
es, small pivots are also often the origin of stabilityproblems in 
omputing SAI pre
onditioners. Therefore, several resear
hers have fo-56
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used on designing methods that repla
e the small pivots of inde�nite matri
es withsome large values. In [8, 51, 64℄, a shifting strategy that adds a value to the diagonalsof an inde�nite matrix is proposed to make the resulting pre
onditioner better 
on-ditioned. It has been noti
ed that determining the value to be added for small pivotsis usually 
riti
al to the performan
e of the resulting pre
onditioner [44℄. In otherwords, sele
ting a large repla
ing value may result in a fa
torization that is stablebut less a

urate. On the other hand, sele
ting a small repla
ing value may result ina fa
torization that is a

urate but unstable. Su
h a tradeo� of the shifting strategyhas been well studied in [68℄.We propose to adopt the idea of a shifting strategy [51℄ to repla
e small or zero el-ements on the main diagonal of the original matrix, and to reinfor
e with a two-phasepre
onditioning pro
ess to deal with the tradeo� between stability and a

ura
y ofthe resulting pre
onditioner. More spe
i�
ally, the �rst phase of the pro
ess employsthe shifting strategy to the original matrix so that a shifted matrix 
an be well 
on-ditioned, and then an approximate inverse, M1; of the shifted matrix is obtained byutilizing FAPINV. In the se
ond phase of the pro
ess, a temporary matrix whi
h is aprodu
t of M1 and the shifted matrix, is 
onsidered to a
quire a better approximateinverse of the original matrix than M1: Applying the shifting strategy again to thetemporary matrix produ
es a se
ond shifted matrix, and FAPINV 
omputes a se
ondinverse approximation, M2; of the se
ond shifted matrix. The resulting sparse ap-proximate inverse, M; has the form of M =M2M1; where M1 and M2 are 
omputedin ea
h phase, respe
tively.This 
hapter is organized as follows. In Se
tion 5.2, a fun
tion for determiningthe shifting parameter �; and a two-phase pre
onditioning of shifted matri
es for
omputing sparse approximate inverses are proposed. In Se
tion 5.3, numeri
al re-sults are presented to demonstrate advantages and pre
onditioning performan
e ofthe proposed pre
onditioner over the standard FAPINV pre
onditioner. Con
luding57
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remarks are in Se
tion 5.4.5.2 Stabilized FAPINV (SFAPINV) Pre
onditionerWe now introdu
e the stabilized fa
tored approximate inverse (SFAPINV) algorithmfor solving inde�nite matri
es. The SFAPINV pre
onditioner is 
omputed in a two-phase pre
onditioning of two shifted matri
es. Ea
h phase generates an approxima-tion of the inverse of a shifted matrix. These two approximations have fa
tored formsof M1 = L1D1U1 � A1�1 and M2 = L2D2U2 � A2�1; where Li is a lower triangu-lar matrix, Di is a diagonal matrix, and Ui is an upper triangular matrix, i = 1; 2.Finally, the resulting pre
onditioner be
omes a form of M = (L2D2U2)(L1D1U1):Determining the Shifting ParameterInde�nite matri
es usually have many small or zero pivots that 
an be the reason ofbreakdown in 
onstru
ting sparse approximate inverse as well as ILU-type pre
on-ditioners. In order to prevent the resulting sparse approximate inverse from beingunstable, we employ a shifting strategy whi
h fa
tors a shifted matrix A0 = A+ �I;where � is a s
alar so that A+�I is well 
onditioned (e.g., diagonally dominant). Aswas mentioned in the introdu
tion, the 
hoi
e of � is signi�
ant for good performan
efor su
h strategies. For example, if a matrix A is ill-
onditioned, the inverse of A+�I
ould be quite di�erent from A�1 for a large value of � [11, 9, 69℄. Indeed, � should belarge enough to ensure the existen
e of the sparse approximate inverse fa
torization,but also small enough so that A+ �I is 
lose to A.We present an eÆ
ient algorithm Find-Alpha(A; �) in Algorithm 5.2.1, to deter-mine a proper value for the shifting parameter �; rather than a brute-for
e approa
hwhi
h is 
omputationally prohibitive.Algorithm 5.2.1. Find-Alpha(A; �).58
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1. For i = 1; n2. 
(i) = 03. � = 04. For i = 1; n5. temp = 06. For j = 1; n7. If (j 6= i), then 
(i) = 
(i) + jaijj8. else temp = jaiij9. If (
(i) � temp), then 
(i) = temp10.For i = 1; n11. If (� � 
(i)), then � = 
(i)12.Return �Note that n refers to the order of the original matrix A; aij denotes a nonzeroelement in row i and 
olumn j; and 
(i) represents an a

umulator of the o�-diagonalsin row i; where i; j = 1; � � � ; n: The fun
tion starts with initializing 
(i) for all rowsand the shifting parameter �: In lines 5{12, 
(i) is determined by sele
ting a largervalue between the summation of the absolute value of the o�-diagonals in row i andthe diagonal of row i: In lines 13{16, the shifting value � is de
ided by 
hoosing thelargest value among 
(i)s. At the end, the fun
tion returns the largest a

umulatoras the 
omputed shifting parameter that will make all rows diagonally dominant.Two-Phase FAPINV Pre
onditioner (SFAPINV)Given a sparse approximate inverse M1 
omputed by using FAPINV to the originalmatrix A; we assume that M1 is ineÆ
ient to solve the pre
onditioned linear systemM1Ax = M1b: (5.1)
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Another sparse approximate inverse M2 for the pre
onditioned linear system (5.1)
ould be 
onsidered to a
quire a 
loser inverse of A than M1: A produ
t of the twopre
onditioners, M2M1; is utilized as a sparse approximate inverse of A; and M2M1be
omes more a

urate to the inverse of A than M1 does. In fa
t, the produ
t matrixM2M1 may hold more information than a single matrix M 
an. If M2M1 is notsu

essful to solve the pre
onditioned system, another approximate inverses may be
onsidered, and this pro
edure 
an be 
ontinued for a few times to obtain a goodpre
onditioner (See [63℄ for details).In the 
ase that the original matrix is inde�nite, a 
ombined pre
onditionerM2M1,
omputed dire
tly from A, however, may be unstable be
ause of small or zero pivots.Furthermore, the shifting strategy makes the original matrix diagonally dominant,but the inverse of A + �I 
ould be quite di�erent from A�1 if A is ill-
onditioned[11, 9, 69℄. Thus, we 
ombine the two-phase pre
onditioning with the shifting strategy,
alled Stabilized FAPINV Pre
onditioner (SFAPINV) in Algorithm 5.2.2, toimprove the a

ura
y and stability of the sparse approximate inverse fa
torization.Here, FAPINV [69℄ is applied as a lo
al pre
onditioner in ea
h phase.Algorithm 5.2.2. Stabilized FAPINV Pre
onditioner1. Call Find-Alpha(A; �1)2. Constru
t a shifted matrix A1 = A+ �1I3. Call FAPINV(A1; �1;M1)4. Compute a temporary matrix W =M1A5. Drop small entries of W with respe
t to �6. Call Find-Alpha(W;�2)7. Constru
t a shifted matrix A2 = W + �2I8. Call FAPINV(A2; �2;M2)9. Return M2M1 60
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Note that �1; �2; and � represent di�erent dropping toleran
es. The algorithm �rstdetermines the shifting parameter �1 from the Find-Alpha fun
tion, and 
onstru
tsa shifted matrixA1 whi
h be
omes diagonally dominant. In line 3, FAPINV(A1; �1;M1)applies the FAPINV pre
onditioner to the matrix A1 with the dropping toleran
e �1;and returns an approximate matrixM1 whi
h has a fa
tored form ofM1 = L1D1U1 ofthe inverse of A1: Then with the fa
tored approximate inverse M1; the pre
onditionedsystem (5.1) 
an be written as(L1D1U1)Ax = (L1D1U1)b: (5.2)The pre
onditioned system (5.2), however, may need many iterations to 
onvergebe
ause the fa
torization L1D1U1 
ould be ina

urate if the shifting parameter �1 istoo large. For this potential problem in ina

ura
y, in line 4, a temporary matrixW = M1A is 
onsidered to further pre
ondition the system (5.2). In line 5, a droppingthreshold parameter, �; is applied to 
ontrol the sparsity rate ofW; whereW is usuallydenser than A ex
ept the diagonal entries. By doing this, the diagonal entries of thematrix W are not dropped regardless of their magnitude. In lines 6-8, the shiftingstrategy is re-employed to obtain a more a

urate and stabilized pre
onditioner, andthe se
ond FAPINV(A2; �2;M2) fa
torization 
omputes an approximation M2 whi
hhas a fa
tored form M2 = L2D2U2 of the inverse of A2: In line 9, the algorithmreturns a 
ombined approximation, M2M1; of the inverse of A: As a result, the �nalpre
onditioned system be
omes(L2D2U2)(L1D1U1)Ax = (L2D2U2)(L1D1U1)b: (5.3)Now, we point out some important features behind our strategy.� It has been well studied that for a given matrix, �nding a suitable shifting pa-rameter of the existing shifting strategies may be 
ompli
ated [64℄. More spe
if-i
ally, too small a diagonal shift will not have the desired e�e
t of stabilization,61
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but too large a diagonal shift will result in an ina

urate pre
onditioner. In thisregard, the Find-Alpha(A; �) fun
tion provides an expli
it and eÆ
ient way indetermining the shifting parameters 
ompared to a 
ommonly used brute-for
eapproa
h.� It is easy to see that the resulting pre
onditioner M2M1 is nonsingular. This
laim 
an be justi�ed by the following two fa
ts. The �rst is that M1 andM2 are produ
ed by the FAPINV pre
onditioner in a fa
tored form whi
h isnonsingular as long as ea
h fa
tor is nonsingular. The se
ond is that the twofa
tored sparse approximate inverses are not singular [69℄. The singularity ofea
h fa
tor 
an be guaranteed by making sure that its diagonal is not zero.� In general, the se
ond shifting parameter �2 requires to be mu
h smaller thanthe �rst parameter �1: It 
an be observed that a matrix whi
h has more zeroson its diagonal needs a larger shifting parameter to stabilize the original matrix.In fa
t, W = M1A tends to be 
loser to I; or more diagonally dominant thanA1 does. Here, we propose two possible settings in 
hoosing the two shiftingparameters �1 and �2: For the 
ase that a matrix is ill-
onditioned and has a lowper
entage of zeros on its diagonal, the setting with �1 = Find-Alpha(A; �1)and �2 = Find-Alpha(W;�2) 
an be a proper 
hoi
e. On the other hand, if amatrix has a large number of zeros on the diagonal of the matrix, the settingwith �1 = Find-Alpha(A; �1) and �2 = 0 is re
ommended.� The resulting pre
onditioner M2M1 = (L2D2U2)(L1D1U1) 
an be not only sta-ble but also a

urate on solving some highly inde�nite matri
es. This 
laim willbe supported by experiments with the two-phase pre
onditioning 
onstru
tedfrom the two shifted matri
es. In short, the shifting method �rst enhan
esthe stability of the fa
torization [51℄, and then the two-phase pre
onditioningimproves the a

ura
y of the pre
onditioner.62
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5.3 Numeri
al ExperimentsWe present numeri
al experiments of the SFAPINV (for stabilized fa
tored approx-imate inverse) pre
onditioner on solving inde�nite and unsymmetri
 matri
es. Thedes
ription of the test matri
es is given in Table 5.1. The test matri
es1 were solvedas they were, that is, no s
alings or permutations were applied. The SFAPINV pre-
onditioner was used as a right pre
onditioner for experiments, but it 
an be used asa left pre
onditioner as well sin
e there was not mu
h di�eren
e in pre
onditioninge�e
t. The pre
onditioned iterative solver employed was GMRES(50). For all linearsystems, the right-hand side was generated by assuming that the solution is a ve
torof all ones. The initial guess was a zero ve
tor. The iteration was terminated whenthe l2-norm of the initial residual was redu
ed by at least eight orders of magnitude,or when the number of iterations rea
hed 500. The programs of our approa
h were
oded in standard Fortran 77 programming language in double pre
ision with 64-bitarithmeti
. The 
omputations were 
arried out on a Sun-Blade-100 workstation witha 500 MHz UltraSPARC III CPU and 1 GB of RAM.In all tables with numeri
al results, \iter," \
omp," \solu," \
ond," \�1;" and\�2" denote the number of GMRES iterations, the CPU time in se
onds for 
om-puting the pre
onditioner, the CPU time for the solution phase (both GMRES andpre
onditioner), the 
ondest2, the �rst and se
ond shifting parameters, respe
tively.\�1;" \�2;" and \� = �1 � �2" are the dropping toleran
es. The value \-1" and \-3" indi
ate the failure of 
onvergen
e within the maximum number of the allowediterations (500) and with the GMRES solver breakdown, respe
tively.1All of these matri
es are available online from the Matrix Market of the National Institute ofStandards and Te
hnology at http://math.mist.gov/matrixMarket.2A statisti
, 
ondest, is introdu
ed by Chow and Saad [19℄ to measure the stability of triangularsolutions.
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Matrix Des
ription n nnz nnzdiag 
onditionFIDAP007 Matri
es generated by the FIDAP Pa
kage 1633 46570 1633 1.93E+11FIDAP014 Matri
es generated by the FIDAP Pa
kage 3251 65747 2351 2.62E+16FIDAP033 Matri
es generated by the FIDAP Pa
kage 1733 20315 1733 1.20E+13GRE 512 Simulation of 
omputer systems 512 1976 296 3.8E+02IMPCOL B Chemi
al engineering plant models 59 271 17 2.7E+05Cavett's pro
essNNC1374 Nu
lear rea
tor models 1374 8588 870 1.0E+02NNC261 Nu
lear rea
tor models 261 1500 150 1.2E+15NNC666 Nu
lear rea
tor models 666 4044 410 1.8E+11PSMIGR 2 Inter-
ounty migration US Inter-
ounty 3140 540022 0 1.0E+02migration 1965-1970RBS480 A Forward Kinemati
s for the Stewart 480 17088 42 1.3E+05platform of Roboti
sRBS480 B Forward Kinemati
s for the Stewart 480 17088 43 1.6E+05platform of Roboti
sRW136 Markov Chain Transition Matrix 136 479 0 1.4E+05WEST0067 Chemi
al engineering plant models 67 294 2 3.0E+02Table 5.1: Des
ription of the test matri
es ; n, nnz, nnzdiag; and 
ondition denotesthe order, the number of nonzero entries, the number of nonzero entries on the maindiagonal, and the 
ondition number of a matrix, respe
tively.Matrix n nnzdiag 
ondition DD � row �1 �2FIDAP007 1633 1633 1.93E+11 0.0245 Yes YesFIDAP014 3251 2351 2.62E+16 0.2125 Yes YesFIDAP033 1733 1733 1.20E+13 0.0848 Yes YesGRE 512 512 296 3.8E+02 0.1328 Yes NoIMPCOL B 59 17 2.7E+05 0.1694 Yes NoNNC1374 1374 870 1.0E+02 0. Yes NoNNC261 261 150 1.2E+15 0. Yes NoNNC666 666 410 1.8E+11 0. Yes NoPSMIGR 2 3140 0 1.0E+02 0. Yes NoRBS480 A 480 42 1.3E+05 0. Yes NoRBS480 B 480 43 1.6E+05 0. Yes NoRW136 136 0 1.4E+05 0. Yes NoTable 5.2: The relationship between the matrix properties and the shifting fa
tors.Shifting Parameters and Dropping Toleran
esWe present results arisen from di�erent settings of the shifting parameters and thedropping toleran
es. In order to obtain a 
on
rete 
onvergen
e rate, two di�erentsettings of the shifting parameters are used in 
onstru
ting the pre
onditioner. Note64
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that the �rst and the se
ond settings are denoted as �1 = Find-Alpha(A; �1) and�2 = Find-Alpha(W;�2); and �1 = Find-Alpha(A; �1) and �2 = 0; respe
tively.We re
ommend that �1 and �2 be 
hosen to improve the stability of the pre
on-ditioner, but for some matri
es, �2 be set to zero to enhan
e the a

ura
y. Table 5.2informs a guideline on 
hoosing the proper setting of the shifting parameters for ea
hmatrix to a
hieve good 
onvergen
e. Determining the shifting parameters is relatedwith the statisti
s of ea
h matrix, su
h as the 
ondition number, diagonally dominantrow rate (DD-row), and the number of nonzeros on diagonal. Spe
i�
ally, when DD-row of a matrix is zero, the se
ond setting to the parameters (�2 = 0) 
ould be 
hosendue to the need for in
reased a

ura
y in the se
ond phase of the pre
onditioning.As we 
an see in Table 5.2, for the matri
es whi
h have small 
ondition numbersand a large number of zeros on their diagonals, we sele
t the se
ond setting to theparameters (�2 = 0). On the 
ontrary, when DD-row of a matrix is not zero, the twoparameters with the �rst setting (�2 6= 0) are usually sele
ted to improve stabilityin the se
ond phase of the pre
onditioning. In this 
ase, the matri
es usually havelarge 
ondition numbers. For example, The FIDAP matri
es, FIDAP007, FIDAP014,and FIDAP033, with the �rst setting have large 
ondition numbers in the range of[1.93E+11, 2.62E+16℄ and low DD-rate of [0.0245, 0.2125℄.The 
hoi
e of the �rst setting is usually a

eptable for the FIDAP matri
es. Ta-bles 5.3 and 5.4 show that the FIDAP matri
es with the �rst setting in
reases thea

ura
y of the pre
onditioning, and as a result of that the number of GMRES it-erations is de
reased noti
eably. The FIDAP014 matrix 
onverges in around 167iterations with the �rst setting (See 
ases 1 and 4 in Figure 5.1), but with the se
ond,it 
onverges in 436 (460) iterations (See 
ases 2 and 3 in Figure 5.1). In addition,the pre
onditioner for solving the FIDAP033 matrix 
annot 
onverge in 500 itera-tions with the se
ond setting while it 
onverges with the �rst setting. In the se
ondsetting, the number of GMRES iterations may be related with the se
ond dropping65
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Shifting fa
tors Dropping toleran
es Convergen
e results�1 �2 �1 �2 � 
omp solu iter 
ond1.14E+07 5.00E-01 1.0E-01 1.0E-02 1.0E-03 2.30E+00 2.28E+00 167 1.76E-071.14E+07 5.00E-01 1.0E-01 1.0E-03 1.0E-04 2.44E+00 2.53E+00 167 1.76E-071.14E+07 5.00E-01 1.0E-01 1.0E-04 1.0E-05 2.50E+00 2.81E+00 167 1.76E-071.14E+07 5.00E-01 1.0E-02 1.0E-01 1.0E-03 2.32E+00 2.32E+00 180 1.76E-071.14E+07 4.95E-01 1.0E-02 1.0E-02 1.0E-04 3.20E+00 2.34E+00 163 1.78E-071.14E+07 4.95E-01 1.0E-02 1.0E-03 1.0E-05 3.40E+00 2.55E+00 163 1.78E-071.14E+07 4.95E-01 1.0E-03 1.0E-01 1.0E-04 6.10E+00 2.47E+00 169 1.78E-071.14E+07 4.95E-01 1.0E-03 1.0E-02 1.0E-05 6.10E+00 2.50E+00 162 1.78E-071.14E+07 4.95E-01 1.0E-04 1.0E-01 1.0E-05 1.07E+01 2.72E+00 169 1.78E-071.14E+07 0 1.0E-03 1.0E-01 1.0E-04 6.17E+00 7.31E+00 460 8.80E+001.14E+07 0 1.0E-01 1.0E-03 1.0E-04 2.75E+00 9.09E+00 436 8.80E+00Table 5.3: Test results for solving the FIDAP014 matrix with di�erent values of theshifting fa
tors and the dropping parameters.Shifting fa
tors Dropping toleran
es Convergen
e results�1 �2 �1 �2 � 
omp solu iter 
ond1.21E+11 6.07E-01 1.0E-01 1.0E-02 1.0E-03 6.69E-01 1.55E+00 289 1.37E-111.21E+11 6.09E-01 1.0E-01 1.0E-03 1.0E-04 7.00E-01 1.87E+00 300 1.37E-111.21E+11 6.10E-01 1.0E-01 1.0E-04 1.0E-05 7.09E-01 1.96E+00 300 1.37E-111.21E+11 0.75E+00 1.0E-02 1.0E-01 1.0E-03 6.59E-01 1.67E+00 320 1.09E-111.21E+11 5.93E-01 1.0E-02 1.0E-03 1.0E-05 6.69E-01 1.60E+00 296 1.49E-111.21E+11 5.94E-01 1.0E-02 1.0E-03 1.0E-05 7.20E+00 1.89E+00 300 1.49E-111.21E+11 5.91E-01 1.0E-03 1.0E-01 1.0E-04 1.57E+00 1.78E+00 288 1.39E-111.21E+11 5.92E-01 1.0E-03 1.0E-02 1.0E-05 1.56E+00 1.89E+00 297 1.50E-111.21E+11 5.92E-01 1.0E-04 1.0E-01 1.0E-05 1.65E+00 1.79E+00 288 1.39E-11Table 5.4: Test results of SFAPINV for solving the FIDAP033 matrix with di�erentvalues of the shifting fa
tors and the dropping parameters.Shifting fa
tors Dropping toleran
es Convergen
e results�1 �2 �1 �2 � 
omp solu iter 
ond1.00E+00 0 1.0E-03 1.0E-02 1.0E-05 1.17E+01 3.69E-01 12 2.44E+001.00E+00 0 1.0E-02 1.0E-02 1.0E-04 8.17E+00 3.29E-01 13 1.79E+001.00E+00 0 1.95E-03 1.0E-02 5.35E-03 1.05E+01 4.40E-01 15 4.19E+001.00E+00 0 1.0E-02 1.0E-01 1.0E-03 9.69E+00 7.09E+00 289 1.03E+021.00E+00 0 1.0E-02 1.0E-03 1.0E-05 8.08E+00 3.00E-01 12 1.52E+001.00E+00 0 1.0E-04 1.0E-01 1.0E-05 1.31E+01 1.07E+01 353 3.09E+02Table 5.5: Test results of SFAPINV for solving the GRE 512 matrix with di�erentvalues of the dropping parameters.
66



www.manaraa.com

0 50 100 150 200 250 300 350 400 450 500
10

0

10
2

10
4

10
6

10
8

10
10

Number of iterations

R
e

s
id

u
a

l 
n

o
r
m

 

 

Case1
Case2
Case3
Case4

(a) The FIDAP 014 matrix [50℄ (b) The 
onvergen
e 
urves of the FIDAP 014 matrixFigure 5.1: The FIDAP 014 matrix [50℄ and the 
onvergen
e 
urves with di�erentvalues of the shifting fa
tors and the dropping parameters.toleran
e. For example, Table 5.5 indi
ates that the GRE 512 matrix (See Figure 5.2)
onverges only with the se
ond setting (�2 = 0). The number of iterations vary from12 to 353 when the dropping toleran
es are in the range of [1.0E-05, 1.0E-01℄. More
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i�
ally, when �2 = 0:1, the number of iterations are 289 and 353 (See 
ases 3 and67
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4 in Figure 5.1) while when �2 6= 0:1, the iterations are from 12 to 15 (See 
ases 1 and2 in Figure 5.1). We found that for the matrix GRE 512, the number of iterationsbe
ome large when the se
ond dropping toleran
e sets at 0:1.Comparison between SFAPINV and FAPINVThe 
omparisons of the SFAPINV (for stabilized fa
tored approximate inverse) pre-
onditioner with the FAPINV (for fa
tored approximate inverse) [69℄ pre
onditionerare presented in Table 5.6. Under \N/A", we report that the pre
onditioner was not
onstru
ted, due to zeros on the diagonal (zero pivot). In ea
h testing, the droppingtoleran
es were 
arefully 
hosen to keep the memory 
ost (sparsity ratio) of these twopre
onditioners 
omparable. Table 5.7 is a list of the parameters used in both theSFAPINV and FAPINV pre
onditioners for the test matri
es.SFAPINV FAPINVMatrix 
omp solu iter 
ond 
omp solu iter 
ondFIDAP007 2.56E+00 1.56E+00 153 8.96E-10 1.79E+01 6.78E+01 -1 3.71E+03FIDAP014 6.10E+00 2.50E+00 162 1.78E-07 9.64E+01 3.30E+02 -1 7.17E+09FIDAP033 1.57E+00 1.78E+00 288 1.39E-11 8.09E+00 4.59E+01 -1 6.83E+01GRE 512 1.17E+01 3.69E-01 12 2.44E+00 N/A N/A -3 N/AIMPCOL B 9.99E-03 9.99E-03 27 7.57E+03 N/A N/A -3 N/APSMIGR 2 1.92E+03 1.69E+01 19 1.49E+03 N/A N/A -3 N/ANNC1372 3.61E+00 2.63E+00 46 9.57E+04 3.71E+00 3.02E+01 -1 6.59E+35NNC261 7.00E-02 8.99E-02 44 5.99E+04 5.00E-02 1.05E+00 -1 2.93E+22NNC666 5.60E-01 2.99E-01 20 1.06.E+05 4.39E-01 6.62E+00 -1 1.23E+12RBS480 A 5.41E+00 4.20E-01 22 2.93E+01 N/A N/A -3 N/ARBS480 B 5.40E+00 3.19E-01 16 1.34E+00 4.26E+00 8.09E+00 -1 1.22E+03RW136 1.60E-02 7.99E-03 20 2.24E+10 3.99E-03 1.24E-01 -1 2.69E+15WEST0067 2.99E-02 0.00E+00 5 1.14E+01 N/A N/A -3 N/ATable 5.6: Comparisons of SFAPINV and FAPINV.As shown in Table 5.6, in most 
ases, the SFAPINV pre
onditioner performedbetter than the FAPINV pre
onditioner. The test matri
es that were not solved bythe FAPINV pre
onditioner may be diÆ
ult to solve by the ILU pre
onditioners, su
has ILU(0), ILUT [54℄. The data in the table also demonstrates that the 
onstru
tion
ost of the pre
onditioners is quite inexpensive. For the 
ase of the FIDAP014 matri-68
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SFAPINV FAPINVShifting fa
tors Dropping toleran
es Dropping toleran
eMatrix �1 �2 �1 �2 � �FIDAP007 2.00E+09 5.64E-01 1.0E-03 1.0E-02 1.0E-05 1.0E-03FIDAP014 1.14E+07 4.95E-01 1.0E-03 1.0E-02 1.0E-05 1.0E-03FIDAP033 1.21E+11 5.91E-01 1.0E-03 1.0E-01 1.0E-04 1.0E-03GRE 512 1.00E+00 0 1.0E-03 1.0E-02 1.0E-05 1.0E-03IMPCOL B 1.27E+01 0 1.0E-04 1.0E-01 1.0E-05 1.0E-04NNC1374 3.56E+03 0 1.0E-01 1.0E-04 1.0E-05 1.0E-01NNC261 3.56E+03 0 1.0E-01 1.0E-04 1.0E-05 1.0E-01NNC666 3.56E+03 0 1.0E-01 1.0E-04 1.0E-05 1.0E-01PSMIGR 2 1.00E+00 0 3.18E-04 1.0E-02 2.79E-05 3.18E-04RBS480 A 5.79E+03 0 1.0E-03 1.0E-02 1.0E-05 1.0E-03RBS480 B 6.16E+03 0 1.0E-03 1.0E-02 1.0E-05 1.0E-03RW136 1.57E+00 0 1.0E-03 1.0E-02 1.0E-05 1.0E-03WEST0067 6.14E+00 0 1.0E-03 1.0E-02 1.0E-05 1.0E-03Table 5.7: Parameters used in SFAPINV and FAPINV.
es, the 
onstru
tion 
ost of the SFAPINV pre
onditioner was 16 times 
heaper thanthat of the FAPINV pre
onditioner. In ea
h phase, an sparse matrix (approximation)
ould be 
omputed with low memory 
ost. As a result, the total 
omputational 
ostof these sparse matri
es be
omes 
heaper 
ompared with 
omputing a single sparsematrix with a denser sparsity pattern.We note that the SFAPINV pre
onditioner does not 
onverge if the �rst shiftingparameter �1 is set to zero (result is not shown in this paper). Thus, a nonzero valuefor the �rst shifting parameter is ne
essary for the two-phase pre
onditioning of theshifting method to a
hieve good performan
e.Computational AnalysisAgain, in order to analyze the 
onvergen
e behavior of the Krylov subspa
e meth-ods, we measure the distribution of the eigenvalues and the 
ondition number of theeigenve
tor matrix and the 
oeÆ
ient matrix [39, 55℄.As we 
an see in Table 5.8 and Figure 5.3 (a), the 
ondition number of the originalmatrix A (FIDAP014) is relatively large, and the eigenvalues of the original matrixare distributed near the origin and far away from zero. The FAPINV pre
onditioned69
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Table 5.8: The largest and smallest eigenvalues and 
onditioning information of theFIDAP014 matrix.Matrix �largest �smallest 
ond(Matrix) 
ond(X)A 1.27E+07 -8.55E-10 2.16E+16 1.00E+00FAPINV(A) 1.02E+46 -6.37E-12 + 1.87E-11i 1.96E+57 1.36E+21SFAPINV(A) 0.5261 -1.52E-16 3.468E+15 5.81E+03matrix (FAPINV(A)) made the spe
trum more spread (See Figure 5.3 (b)), andthe 
ondition number of the eigenve
tor matrix and pre
onditioned matrix be
amelarger than the original matrix. As a result, on the original matrix and the FAPINVpre
onditioned matrix, the 
onvergen
es of the GMRES method are failed.It has been known that eigenvalues tightly 
lustered around a single point (awayfrom the origin) provide fast 
onvergen
e, while widely spread eigenvalues, espe
iallyaround the origin, 
ause the 
onvergen
e to be very slow [39, 55℄.Unlike the FAPINV pre
onditioned matrix, the eigenvalues of the SFAPINV pre-
onditioned matrix (SFAPINV(A)) be
ame more 
lustered as 
learly shown in Fig-ure 5.3 (
). In addition, the largest and the smallest eigenvalue in magnitude of theSFAPINV(A) are 0.5261 and -1.52E-16, and the 
ondition numbers of the eigenve
tormatrix of SFAPINV(A) is de
reased. These improvements support a good 
onver-gen
e behavior of the GMRES method on the SFAPINV pre
onditioned matrix.5.4 Con
luding RemarksWe proposed an algorithm 
alled SFAPINV (for stabilized fa
tored approximate in-verse) for solving highly inde�nite matri
es. SFAPINV 
onsists of two pre
onditioningphases to two shifted matri
es. Ea
h phase is a fa
torization of a shifted matrix ofthe form A+ �I: The shifting method is employed to prevent unstable fa
torizationdue to the small or zero pivots of the original matrix, and the two-phase pre
ondi-tioning is utilized to improve the a

ura
y of the pre
onditioner. FAPINV [69℄ hasbeen utilized as a lo
al pre
onditioner in the SFAPINV pre
onditioning be
ause of70
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(a) Eigenvalues of the FIDAP014 matrix
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(b) Eigenvalues of the FIDAP matrix with FAPINV
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(
) Eigenvalues of the FIDAP014 matrix with SFAPINVFigure 5.3: Plots of the eigenvalues of the FIDAP014 matrix. (These sub�gures arein di�erent s
ale.)its low 
onstru
tion 
ost and robustness.Numeri
al experiments demonstrate the stability and a

ura
y of the SFAPINVpre
onditioner. Moreover, for the NNC1372 and FIDAP matri
es, the 
onstru
tion
ost of the SFAPINV pre
onditioner may be 
heaper than that of a single sparse71
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matrix in the FAPINV pre
onditioner although the SFAPINV pre
onditioner is 
om-posed of two sparse matri
es, M1 and M2: In fa
t, the memory 
ost of ea
h sparsematrix is small and ea
h of the sparse approximate inverse matri
es 
ould be 
om-puted 
heaply. A

ording to [63℄, 
omputing a series of two matri
es where ea
hmatrix needs small memory 
ost may be 
heaper than that of a matrix that needshigh memory 
ost. Thus, the SFAPINV pre
onditioner 
ould be robust and fast onsolving inde�nite matri
es.We remark that the 
on
ept of the two-phase pre
onditioning of shifted matri
esmay be applied to other pre
onditioning te
hniques. For example, one 
an 
onstru
ta hybrid two-phase pre
onditioning by using a di�erent pre
onditioner in ea
h phase.Also, the presented algorithm 
an be extended to a parallel version be
ause FAPINVnaturally possesses of great inherent parallelism.

Copyright 
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Chapter 6 Fa
tored Approximate Inverse Pre
onditioners with Dynami
Sparsity Patterns
The sear
h for an optimal sparsity pattern in 
onstru
ting sparse approximate inverse(SAI) pre
onditioners should be taken with extreme 
are be
ause the performan
e ofSAI pre
onditioners depends on the sparsity pattern [69℄. In this 
hapter, we presenttwo dynami
 sparsity pattern sele
tion algorithms for FAPINV (fa
tored approximateinverse) pre
onditioners in solving general sparse matri
es. The sparsity pattern isadaptively updated in the 
onstru
tion phase by using 
ombined information of theinverse and original triangular fa
tors of the original matrix.6.1 Introdu
tionThe 
omputational eÆ
ien
y and potential parallelism of sparse approximate inverse(SAI) leads us to 
hoose SAI pre
onditioners as an alternative to the 
onventionalILU pre
onditioners. It has been well known that the performan
e of SAI pre
on-ditioners depends on their sparsity patterns [63, 69℄. Thus, obtaining an optimalsparsity pattern in 
onstru
ting an SAI pre
onditioner 
an be the most importantpart. Generally speaking, there exist two main 
lasses of methods 
alled stati
 anddynami
 strategies in determining the sparsity pattern of SAI. A stati
 sparsity pat-tern strategy pres
ribes the sparsity pattern before 
onstru
ting a pre
onditioner,and the pattern remains un
hanged until �nishing the 
onstru
tion. The use of apres
ribed (�xed) pattern through the 
onstru
tion pro
ess assumes that this 
lass ofsparsity pattern sele
tion strategy is usually eÆ
ient in terms of 
omputational 
ost.But, for general sparse matri
es, the pres
ribed sparsity pattern is often inadequatefor robustness of SAI [69℄. On the 
ontrary, a dynami
 sparsity pattern strategy ad-justs the pattern using some rules in the 
onstru
tion phase. Su
h a strategy usually73
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omputes more a

urate and robust pre
onditioners than a stati
 strategy [63℄. Thus,a dynami
 sparsity pattern strategy may be used to substitute for a stati
 sparsitypattern strategy in solving diÆ
ult matri
es.In re
ent years, a few dynami
 pattern strategies [15, 41℄ for SAI pre
onditionershave been developed. For example, Bollh�ofer [14℄ showed that the norms of the inversetriangular fa
tors have dire
t in
uen
e on the dropping strategy in 
omputing a newILU de
omposition. Based on this insight, Bollh�ofer [15℄ proposed an algorithm thatmanages the pro
ess of dropped entries with small absolute values by using the rownorm of any row of the inverse fa
tors, but the algorithm has a limitation on solvingsome ill-
onditioned problems.As a part of our 
ontinuous e�orts in determining dynami
 sparsity pattern, weintrodu
e two enhan
ed algorithms, whi
h extend the algorithm [15℄ mentioned above,using 
ombined information of the norm of the inverse fa
tors and either the largestabsolute value of the original fa
tors or the norm of the original fa
tors. Here, afa
tored approximate inverse (FAPINV) [69℄, whi
h is a sparse approximate inversewith a fa
tored form, is utilized as an SAI.The remainder of this 
hapter is organized as follows. Se
tion 6.2 des
ribes theFAPINV algorithm used to 
hara
terize and justify our algorithms for dynami
 spar-sity pattern in Se
tion 6.3. In Se
tion 6.4, numeri
al results are presented to demon-strate the performan
e of the proposed algorithms over a stati
 pattern based FAP-INV. Con
luding remarks are in Se
tion 6.5.6.2 Fa
tored Sparse Approximate InversesIn this se
tion, we �rst review a general framework of a fa
tored inverse and an in
om-plete fa
tored inverse algorithms, and this framework will be utilized in Se
tion 6.3to justify our sparsity pattern algorithms.Zhang [69℄ proposed an algorithm of a fa
tored inverse for sparse matri
es, based74
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on the Luo's algorithm [47℄, in the form,A�1 = LDU; (6.1)for a nonsingular matrix A of order n; where L = [L1; L2; � � � ; Ln℄ is a lower triangularmatrix of order n; and Li is a 
olumn ve
tor of length n with Li;i = 1; i = 1; 2; � � � ; n:Similarly, U = [U1; U2; � � � ; Un℄T is an upper triangular matrix with a row ve
tor Uiand Ui;i = 1; i = 1; 2; � � � ; n; and D = diag[D1;1; D2;2; � � � ; Dn;n℄ denotes a diagonalmatrix. The fa
tored inverse algorithm that 
omputes the inverse matrix, A�1; ofEquation (6.1) is presented in Algorithm 6.2.1.Algorithm 6.2.1. Fa
tored Inverse Algorithm for Dense Matri
es [47℄.1. For j = n! 1 with step (-1)2. For i = j + 1; n3. w(j)i = aj;i +Pnk=i+1 aj;k � Lk;i4. For i = j + 1; n5. Uj;i = �w(j)i �Di;i �Pnk=i+1w(j)k �Dk;k � Uk;i6. Dj;j = 1=(aj;j +Pnk=j+1 Uj;k � ak;j)7. For i = j + 1; n8. z(j)i = ai;j +Pnk=i+1 Ui;k � ak;j9. For i = j + 1; n10. Li;j = �z(j)i �Di;i �Pnk=i+1 z(j)k �Dk;k � Li;kNote that n refers to the order of the original matrix A; and aij denotes a nonzeroelement in row i and 
olumn j; where i; j = 1; � � � ; n: The upper inverse fa
tor Uand the lower inverse fa
tor L are 
omputed in lines 2{7 and lines 9{14, respe
tively,and the diagonal inverse is 
onstru
ted in line 8. Although Algorithm 6.2.1 is written75
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to 
ompute the inverse of a dense matrix, it 
an be easily modi�ed to 
ompute theinverse of a sparse matrix [69℄.For a sparse matrix, we 
an see that the L and U matri
es 
omputed by Algo-rithm 6.2.1 
an be too dense, and the 
omputational 
ost might be high [69℄. Thus,an in
omplete inverse method that drops elements with small absolute values of theinverse is usually employed to redu
e the 
ost and maintain the sparsity of the inversefa
tors. For example, Zhang [69℄ introdu
ed an in
omplete FAPINV algorithm thatapplies a stati
 dropping strategy in two parts (four pla
es) of the 
omputational pro-
ess to improve Algorithm 6.2.1. Spe
i�
ally, for a given dropping toleran
e � > 0;the 
onditions jw(j)i j � � and jz(j)i j � � determine the loop involving lines 2{4 and9{11 to be skipped, respe
tively. After pro
essing lines 5{7 and 12{14, Uj;i and Li;jare dropped if their absolute values are smaller than or equal to �:De�nition 6.2.1. A matrix A is said to be an M-matrix if it satis�es the followingfour properties:1. ai;i > 0 for i = 1; � � � ; n:2. ai;j � 0 for i 6= j; i; j = 1; � � � ; n:3. A is nonsingular.4. A�1 � 0:A

ording to Maijerink and van der Vorst [52℄, a 
onventional in
omplete LUfa
torization 
an be exe
uted in an exa
t fa
torization, and the 
omputed pivots arestri
tly positive when A is a nonsingular M -matrix. This holds true in FAPINVasso
iated with the inverse 
omputed from Algorithm 6.2.1, and in the following,Proposition 6.2.2 establishes a proof that is similar to Proposition 3.1 in [11℄ whereno breakdown in the in
omplete pro
ess o

urs if A is an M -matrix.
76
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Proposition 6.2.2. Let A be an M-matrix, and A�1 = LDU be an inverse matrixof A obtained by Algorithm 6.2.1, where L;D; and U are lower, diagonal, and upperinverse fa
tors of A; respe
tively. ThenUj;i � 0; Li;j � 0 and Dj;j > 0 (6.2)for 1 � i; j � n:Proof. We will prove the inequalities in (6.2) by using indu
tion. For j = n; theinequalities are obviously true. In fa
t,Ln;n = Un;n = 1 and Dn;n = 1=an;n � an;n�1 > 0:Now, the following indu
tive assumptions are 
onsidered for j � n � 1 and j + 2 �i � n: Uj+1;i = �w(j+1)i �Di;i � nXk=j+2w(j+1)k �Dk;k � Uk;i � 0; (6.3)Li;j+1 = �z(j+1)i �Di;i � nXk=j+2 z(j+1)k �Dk;k � Li;k � 0; and (6.4)Dj+1;j+1 = 1=(aj+1;j+1 + nXk=j+2Uj+1;k � ak;j+1) > 0: (6.5)From the indu
tive assumptions (6.3) and (6.4), we get Ui;k � 0 and Lk;i � 0 fori+1 � k � n: Also, aj;i and ai;j are nonpositive sin
e A is an M -matrix. Hen
e, w(j)iand z(j)i 
an be expressed byw(j)i = aj;i + nXk=i+1 aj;k � Lk;i � 0 and z(j)i = ai;j + nXk=i+1Ui;k � ak;j � 0; (6.6)where j + 1 < i < n: Using the updating formula given in Algorithm 6.2.1 forUj;i; Li;j; and Dj;j; we haveUj;i = �w(j)i �Di;i � i�1Xk=j+1w(j)k �Dk;k � Uk;i � 0;77



www.manaraa.com

Li;j = �z(j)i �Di;i � i�1Xk=j+1 z(j)k �Dk;k � Lk;i � 0;and Dj;j = 1=(aj;j + nXk=j+1Uj;k � ak;j) > 0:Therefore, no 
omponent of Uj;i and Li;j 
an be
ome negative, and Dj;j remains pos-itive.In
ompleteness arises from FAPINV due to the dropping of nonzero �ll-ins and
auses the algorithm to produ
e smaller or equal absolute entries than those of theinverse fa
torization from Algorithm 6.2.1. In a

ordan
e with su
h fa
ts and theresult of Proposition 6.2.2, we 
an see that FAPINV also generates a nonnegativefa
tored approximate inverse when A is an M -matrix.Proposition 6.2.3. Let A be an M-matrix, and A�1 = LDU be an inverse matrixof A obtained by Algorithm 6.2.1, where L;D; and U are lower, diagonal, and upperinverse fa
tors of A; respe
tively. If G = ~L ~D ~U is a fa
tored approximate inverse
omputed by FAPINV [69℄, where ~L; ~D; and ~U are lower, diagonal, and upper inversefa
tors, respe
tively. Then D�1A � G � A�1; (6.7)where DA is the diagonal part of A:Proof. Sin
e the elements of ~L; and ~U are obtained from L and U by dropping ele-ments if the absolute value of the elements are smaller than a dropping toleran
e �;then ~L � L; ~D � D; and ~U � U:Hen
e, we 
an easily get G � A�1:From Proposition 6.2.2, we know thatDj;j > 0; aj;j > 0; Uj;k � 0; and ak;j � 0:78
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It follows that 0 < aj;j + nXk=j+1Uj;k � ak;j � ajj:Therefore, Dj;j � 1=aj;j:
As the results of Proposition 6.2.2 and Proposition 6.2.3, we have found that boththe exa
t fa
tored inverse 
omputed by Algorithm 6.2.1 and FAPINV [69℄ 
onstru
tnonnegative inverses when A is an M -matrix.6.3 Dynami
 Sparsity Pattern based Fa
tored Approximate Inverse Pre-
onditionersWe now introdu
e two algorithms that determine dynami
 sparsity patterns for FAP-INV pre
onditioners on solving general sparse matri
es. In determining the sparsitypattern, we exploit information of the inverse and original fa
tors by the followingtwo supporting reasons that (1) the entries of FAPINV are 
omputed by the origi-nal and previously 
omputed inverse triangular fa
tors [69℄, and (2) the norm of theinverse fa
tor is strongly related with the dropping toleran
e of FAPINV [14℄. Fromthat point of view, (1) our �rst algorithm, Norm-Largest-Dynami
 sparsity patternin Algorithm 6.3.1, 
omputes FAPINV with the dynami
 sparsity pattern using thenorm of the inverse fa
tors multiplied by the largest absolute value of the originalfa
tors, and (2) the se
ond, Norm-Norm-Dynami
 sparsity pattern Algorithm 6.3.2,employs the norm of the inverse fa
tors divided by the norm of the original fa
tors.Algorithm 6.3.1. FAPINV with Norm-Largest-Dynami
 sparsity pat-tern.
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1. Find the largest absolute values, LargeL and LargeU ;of the lower and upper parts of A2. For j = n; 1 with step (-1)3. �U(j) = �L(j) = 04. For i = j + 1; n5. Compute Uj;i by using FAPINV [69℄6. If (jUj;ij > �U(j)), then �U(j) = jUj;ij7. �U = �U(j) � LargeU8. If (�U > 1), then � = �=�U9. For i = j + 1; n10. If (jUj;ij < �), then Uj;i = 011. Dj;j = 1=(aj;j +Pnk=j+1 Uj;k � ak;j)12. For i = j + 1; n13. Compute Li;j by using FAPINV [69℄14. If (jLi;jj > �L(j)), then �L(j) = jLi;jj15. �L = �L(j) � LargeL16. If (�L > 1), then � = �=�L17. For i = j + 1; n18. If (jLi;jj < �), then Li;j = 0Note that LargeL and LargeU refer to the largest absolute values of the lower andupper triangular fa
tors of the original matrix, respe
tively. The �U(j) and �L(j) inlines 6 and 15 denote the largest absolute values of the 
olumns UTj and Lj; respe
-tively. The upper inverse fa
tor U and the lower inverse fa
tor L are 
omputed inlines 4{12 and lines 14{22, respe
tively, and the diagonal inverse D is 
onstru
ted inline 13. In lines 5 and 15, Uj;i and Li;j 
an be obtained by using the FAPINV algo-rithm [69℄. In lines 9 and 19, the dropping toleran
e � is determined by �U and �L;80
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and the value of � is updated for ea
h j. Finally, in lines 10{12 and 20{22, if theabsolute value of an element is smaller than the toleran
e �; the element is thendropped.Algorithm 6.3.2. FAPINV with Norm-Norm-Dynami
 sparsity pattern.1. For i = 1; n2. U�(i) = the largest absolute value in the row i of the upper triangular fa
tor of A:3. L�(i) = the largest absolute value in the row i of the lower triangular fa
tor of A:5. For j = n; 1 with step (-1)6. �U(j) = �L(j) = 07. For i = j + 1; n8. Compute Uj;i by using FAPINV [69℄9. If (jUj;ij > �U(j)), then �U(j) = jUj;ij11. �U = �U(j)=U�(j)12. If (�U > 1), then � = �=�U13. For i = j + 1; n14. If (Uj;i < �), then Uj;i = 016. Dj;j = 1=(aj;j +Pnk=j+1 Uj;k � ak;j)17. For i = j + 1; n18. Compute Li;j by using FAPINV [69℄19. If (jLi;jj > �L(j)), then �L(j) = jLi;jj21. �L = �L(j)=L�(j)22. If (�L > 1), then � = �=�L23. For i = j + 1; n24. If (Li;j < �), then Li;j = 0As similar to Algorithm 6.3.1, the upper inverse fa
tor U and the lower inverse81
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fa
tor L are 
omputed in lines 7{15 and lines 17{25, respe
tively, and the diagonalinverse D is 
onstru
ted in line 16.Let G1 and G2 be two FAPINV pre
onditioners of a matrix A: If a given droppingtoleran
e of G1 is greater than or equal to that of G2; thenL1i;j � L2i;j; U1j;i � U2j;i; and D1j;j � D2j;j;where G1 = L1D1U1 and G2 = L2D2U2: Also, from Proposition 6.2.3, we know thatG1 and G2 are nonnegative matri
es if A is an M -matrix. Thus, the following propo-sition is straightforward.Proposition 6.3.1. Let A be an M-matrix and A�1 = LDU be the inverse matrix ofA: If G1 = L1D1U1 is obtained by FAPINV [69℄ with a stati
 dropping toleran
e �1;G2 = L2D2U2 is from Algorithm 6.3.1 or Algorithm 6.3.2 with a dynami
 droppingtoleran
e �2; and �1 � �2: ThenD�1A � G1 � G2 � A�1; (6.8)where DA is the diagonal part of A:Proof. Based on the Algorithm 6.3.1 and Algorithm 6.3.2, �2 is determined by �1:Spe
i�
ally, in 
omputing L and U; �2 = �1=�L and �2 = �1=�U where �L > 1 and�U > 1; respe
tively. Be
ause of �1 � �2 and by Proposition 6.2.2,0 � L1i;j � L2i;j; 0 � U1j;i � U2j;i; and 0 < D1j;j � D2j;j:It follows that G1 � G2:As we 
an see in Proposition 6.3.1, the a

ura
y of FAPINV depends on the valueof the dropping toleran
e �: This implies that the FAPINV pre
onditioners with thedynami
 sparsity patterns be
ome more a

urate than the FAPINV with a stati
sparsity pattern. We present the 
omparisons between a stati
 and dynami
 patternfor the FAPINV pre
onditioners in Table 6.4.82
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6.4 Numeri
al ExperimentsWe present numeri
al experiments of FAPINV with the proposed sele
tion strategiesof dynami
 sparsity patterns on solving a few general sparse matri
es. The des
rip-tions of the test matri
es are given in Table 6.4. The matri
es1 were solved as theywere, that is, no s
alings or permutations were applied.The FAPINV (for fa
tored approximate inverse) [69℄ pre
onditioner was used asan approximate inverse right pre
onditioner in the experiments. The pre
onditionediterative solver employed was GMRES(50). For all linear systems, the right-handside was generated by assuming that the solution is a ve
tor of all ones. The initialguess was a zero ve
tor. The iteration was terminated when the l2-norm of the initialresidual was redu
ed by at least eight orders of magnitude, or when the numberof iterations rea
hed 500. The programs of our approa
hes were 
oded in standardFortran 77 programming language in double pre
ision with 64-bit arithmeti
, andthe 
omputations were 
arried out on a Sun-Blade-100 workstation with a 500 MHzUltraSPARC III CPU and 1 GB of RAM.In all tables with numeri
al results, STATIC denotes an FAPINV [69℄ pre
on-ditioner with a stati
 sparsity pattern. NLD and NND represent FAPINV pre
on-ditioners with Norm-Largest-Dynami
 and Norm-Norm-Dynami
 sparsity patternsdes
ribed in Algorithm 6.3.1 and Algorithm 6.3.2, respe
tively; The \iter" refers tothe number of GMRES iterations, the \time" represents the CPU time in se
ondsfor 
omputing the pre
onditioner and for the solution phase, and \spar" denotes thesparsity ratio that is the ratio of the number of nonzero elements of the pre
ondi-tioner to that of the original matrix; The dropping toleran
e \�" is utilized as botha dropping toleran
e of STATIC and initial dropping toleran
es of NLD and NND;The value \-1" indi
ates the failure of 
onvergen
e within the maximum number of1All of these matri
es are available on-line from the Matrix Market of the National Institute ofStandards and Te
hnology at http://math.mist.gov/matrixMarket.83
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Table 6.1: Des
ription of the test matri
es ; n, nnz, nnzdiag; and 
ondition denotesthe order, the number of nonzero entries, the number of nonzero entries on the maindiagonal, and the 
ondition number of a matrix, respe
tively. Under \N/A", wereport that the 
ondition number was not available from Matrix Market [50℄.Matrix Des
ription n nnz nnzdiag 
onditionCAVITY03 Driven Cavity Problems 317 7311 243 3.30E+06CAVITY04 Driven Cavity Problems 317 5923 243 1.40E+07CAVITY06 Driven Cavity Problems 1182 32747 883 N/ACAVITY08 Driven Cavity Problems 1182 32747 883 N/ACAVITY11 Driven Cavity Problems 2597 76367 1923 N/ACAVITY13 Driven Cavity Problems 2597 76367 1923 N/ACAVITY15 Driven Cavity Problems 2597 76367 1923 N/AE05R0300 Driven 
avity driven 
avity,5x5 elements, Re= 300 236 5856 162 1.30E+06E05R0400 Driven 
avity driven 
avity,5x5 elements, Re= 400 236 5846 162 2.40E+06E05R0500 Driven 
avity driven 
avity,30x30 elements, Re=500 9661 306002 6962 1.31E+11FIDAP006 Matri
es generatedby the FIDAP Pa
kage 1651 49479 1180 3.45E+21FIDAP020 Matri
es generatedby the FIDAP Pa
kage 2203 69579 1603 5.89E+08FIDAP021 Matri
es generatedby the FIDAP Pa
kage 656 18962 476 9.10E+08FIDAP025 Matri
es generatedby the FIDAP Pa
kage 848 24261 608 7.90E+07FIDAP026 Matri
es generatedby the FIDAP Pa
kage 2163 93749 1706 4.66E+18FIDAPM02 Matri
es generatedby the FIDAP Pa
kage 537 19145 441 1.40E+05LNS 131 Fluid 
ow modeling 131 536 112 1.50E+15NNC261 Nu
lear rea
tor models 261 1500 150 1.20E+15NNC666 Nu
lear rea
tor models 666 4032 410 1.80E+11allowed iterations (500).Comparison of Pre
onditioners with Stati
 and Dynami
 PatternTable 6.4 shows the 
omparisons between a stati
 and dynami
 sparsity pattern forthe FAPINV pre
onditioners with two di�erent settings of the dropping toleran
e,� = 0:1 and � = 0:01: 84
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Table 6.2: Comparisons of the number of pre
onditioned GMRES iterations withdi�erent sparsity pattern based FAPINV pre
onditioners.� = 0:1 � = 0:01STATIC NLD NND STATIC NLD NNDMatrix iter iter iter iter spar iter spar iter sparCAVITY03 -1 37 41 -1 8.32 19 9.16 36 8.95CAVITY04 -1 25 22 -1 6.19 10 7.35 23 8.35CAVITY06 -1 -1 22 -1 7.07 -1 15.55 15 30.96CAVITY08 -1 -1 40 -1 18.02 46 25.71 22 31.48CAVITY11 -1 -1 31 -1 9.10 -1 25.49 22 65.57CAVITY13 -1 -1 58 -1 21.57 -1 43.55 33 65.63CAVITY15 -1 -1 92 -1 44.40 -1 52.39 40 67.95E05R0300 -1 -1 33 197 5.26 28 7.19 20 8.22E05R0400 -1 -1 46 -1 6.37 18 8.13 23 8.56E05R0500 -1 100 47 -1 6.98 15 8.72 23 9.03FIDAP006 -1 94 295 -1 21.72 9 35.71 37 43.52FIDAP020 -1 -1 14 -1 18.08 -1 27.85 7 62.47FIDAP021 -1 -1 27 -1 8.31 -1 13.57 19 20.28FIDAP025 -1 -1 7 -1 16.21 -1 19.83 4 28.82FIDAP026 -1 452 220 -1 9.033 191 21.83 124 34.28FIDAPM02 -1 -1 36 -1 6.91 42 10.77 14 13.13LNS 131 -1 -1 5 -1 2.65 3 5.12 4 9.89NNC261 -1 15 36 -1 21.23 28 28.52 30 27.06NNC666 -1 17 44 -1 46.16 17 60.53 28 57.29As seen in the table, STATIC failed in solving any of the test matri
es with thetwo values of � ex
ept E05R0300 that was solved in 197 iterations when � = 0:01;whereas NLD and NND solved the matrix in 28 and 20 iterations, respe
tively. NNDsolved all the test matri
es, while NLD solved 7 and 12 of the test matri
es when� = 0:1 and � = 0:01; respe
tively.In terms of spa
e 
omplexity, NLD and NND demanded more memory spa
e thanSTATIC on solving the test matri
es, but it would seem relatively minor 
omparedto the number of iterations with 
onvergen
e. For example, NND and NLD solvedthe CAVITY03, CAVITY04, E05R0500, and NNC666 matri
es in 36, 10, 15, and28 iterations with 1.075, 1.187, 1.249, and 1.241 times more memory storages thanSTATIC with no 
onvergen
e, respe
tively.85
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Comparison with Strategies of Dynami
 Sparsity PatternWe 
ompare our algorithms, NLD and NND, with the one by Bollh�ofer [15℄ in Ta-ble 6.4. Under \N/A," we report that the value is not available due to no 
onvergen
e,Table 6.3: Comparisons with di�erent dynami
 sparsity pattern strategies.� = 0:01NND Bollh�ofer's NLDMatrix iter time spar iter time spar iter time sparCAVITY03 36 0.53 8.95 47 0.57 8.63 19 0.45 9.16CAVITY04 23 0.43 8.35 28 0.38 7.24 10 0.32 7.35CAVITY06 15 16.85 30.96 -1 N/A 14.72 -1 N/A 15.55CAVITY08 22 17.79 31.48 355 28.73 21.89 46 15.09 25.71CAVITY11 22 137.27 65.57 -1 N/A 21.21 -1 N/A 25.49CAVITY13 33 141.67 65.63 -1 N/A 35.02 -1 N/A 43.55CAVITY15 40 149.86 67.95 -1 N/A 44.92 -1 N/A 52.39E05R0300 20 0.28 8.22 33 0.26 6.85 28 0.26 7.19E05R0400 23 0.30 8.56 42 0.33 7.63 18 0.27 8.13E05R0500 23 0.32 9.03 42 0.35 8.36 15 0.28 8.72FIDAP006 37 24.17 43.52 46 25.87 43.68 9 15.55 35.71FIDAP020 7 56.33 62.47 -1 N/A 28.95 -1 N/A 27.85FIDAP021 19 3.14 20.28 -1 N/A 13.75 -1 N/A 13.57FIDAP025 4 5.44 28.82 404 19.71 21.76 -1 N/A 19.83FIDAP026 124 89.99 34.28 -1 N/A 17.84 191 67.39 21.83FIDAPM02 14 1.73 13.13 46 1.98 11.05 42 1.85 10.77LNS 131 4 0.01 9.89 -1 N/A 4.91 3 0.01 5.12NNC261 30 0.15 27.06 27 0.14 27.03 28 0.16 28.52NNC666 28 1.17 57.29 18 0.99 57.56 17 1.05 60.53and \Bollh�ofer's" refers to the pre
onditioner with a dynami
 sparsity pattern pro-posed in [15℄.Based on the numeri
al results in Table 6.4, we reported the 
omparisons inthree aspe
ts of a

ura
y, eÆ
ien
y, and memory storage. In terms of a

ura
y,NND performed better than Bollh�ofer's in most 
ases, and NLD was 
omparable toBollh�ofer's. For example, NND solved all of the test matri
es, while Bollh�ofer's andNLD solved 11 and 12 of the test matri
es, respe
tively. Spe
i�
ally, the number ofiterations of NND is mu
h smaller than that of Bollh�ofer's and NLD (See Figure 6.1),and NND generally used less CPU time in solving the test matri
es than Bollh�ofer's.86
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(a) The CAVITY03 matrix (b) The CAVITY08 matrixFigure 6.1: The 
onvergen
e 
urves of the CAVITY matri
es.Also, with respe
t to the storage spa
e, NLD and NND might need slightly morememory storage than Bollh�ofer's, but NND still performed far better in 
onvergen
ethan Bollh�ofer's. For example, NLD using 1.174 times more memory storage solvedthe CAVITY08 matrix in 46 iterations while Bollh�ofer's solved in 355 iterations.Computational AnalysisIn this subse
tion, we analyze the 
onvergen
e behavior of the Krylov subspa
e meth-ods with respe
t to the distribution of the eigenvalues and the 
ondition number ofthe eigenve
tor matrix.Table 6.4: Largest and smallest eigenvalues and 
onditioning information of theLNS 131 matrix. Matrix �largest �smallest 
ond(X)A -1.19E+05 -1.23E-04 1.67E+17FAPINV(A) -8.50E+67 -2.29E-56 2.53E+30NLD(A) -1.55E+22 8.29E-13 7.82E+07NND(A) -1.52E+22 -1.43E-12 2.22E+08Table 6.4 and Figure 6.2 (a) report that the 
ondition number of the eigenve
tormatrix of the original matrix A (LNS 131) is relatively large, and the eigenvaluesof the original matrix are spread on the positive and negative parts. The FAPINV87
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pre
onditioned matrix (FAPINV(A)) shifted spe
trum to the left hand side of theorigin (See Figure 6.2 (b)), but the 
ondition number of the eigenve
tor matrix is
onsiderably large. As a result, the 
onvergen
es of the GMRES method are failedon the original matrix and FAPINV(A).On the other hand, the NLD pre
onditioned matrix (NLD(A)) and the NND pre-
onditioned matrix (NND(A)) performed di�erently in the aspe
t of the 
onditionnumber of the eigenve
tor matri
es. The 
ondition numbers of the eigenve
tor ma-tri
es of NLD(A) and NND(A) are signi�
antly de
reased as shown in Table 6.4. Inaddition, the distribution of the eigenvalues of LNS 131 pre
onditioned by NLD andNND shifted the spe
trum to the left hand side of the origin (See Figure 6.2 (
) and(d)). These strongly support a good 
onvergen
e behavior of the GMRES method onthese NLD and NND pre
onditioned matri
es although the 
ondition number of theNLD and NND pre
onditioned matri
es are bit in
reased.6.5 Con
luding RemarksWe proposed two algorithms that determine the dynami
 sparsity patterns for theFAPINV pre
onditioners for solving general sparse matri
es. In the 
omputationphase, the dropping toleran
e has been adaptively determined by the norm of theinverse fa
tors and either the norm of the original fa
tors or the largest value ofthe original fa
tors. Numeri
al experiments showed that FAPINV with the proposeddynami
 sparsity pattern generates more a

urate and robust pre
onditioner thanFAPINV with not only a stati
 sparsity pattern but also other dynami
 sparsitypattern (Bollh�ofer's) pre
onditioners do.
Copyright 

 Eun-Joo Lee, 2008.88
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Chapter 7 Con
lusions and Future Work
In solving large and sparse linear systems, whi
h are usually generated from many
omputational s
ien
e and engineering problems, pre
onditioned Krylov subspa
emethods are generally 
onsidered. This dissertation has been mainly fo
used on pre-
onditioning te
hniques to improve the performan
e and reliability of iterative meth-ods in solving linear systems. In this 
hapter, we summarize the spe
i�
 
ontributionsof this dissertation and present opportunities for future work.7.1 A

omplishmentsPre
onditioned Krylov subspa
e methods are generally regarded as one 
lass of themost promising te
hniques [9, 17, 19, 41℄ for solving very large and sparse linear sys-tems. In general, in
omplete lower-upper (ILU) triangular fa
torizations and sparseapproximate inverse (SAI) pre
onditioning te
hniques have attra
ted mu
h attentionas a pre
onditioner be
ause they have been su

essful in solving many symmetri
and non-symmetri
 matri
es. These te
hniques, however, may yield two 
ommonproblems. Firstly, their a

ura
y may be insuÆ
ient to yield an adequate rate of
onvergen
e due to the diÆ
ulty in determining parameters or threshold values in
onstru
ting pre
onditioners. In addition, they may en
ounter diÆ
ulty when thematrix to be solved is inde�nite, that is, when the matrix has both positive and neg-ative eigenvalues. Spe
i�
ally, small or zero pivots in inde�nite matri
es may produ
eunstable and ina

urate pre
onditioners. In response to these problems asso
iatedwith pre
onditioning te
hniques, we have 
on
erned with improving a

ura
y andstability of a pre
onditioner in solving large and sparse matri
es.
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In
omplete LU (ILU) Pre
onditioning Enhan
ement StrategiesSeveral pre
onditioning enhan
ement strategies for improving ina

urate pre
ondi-tioners produ
ed by the in
omplete LU fa
torizations of sparse matri
es were pre-sented. The strategies employ the elements that are dropped during the in
ompleteLU fa
torization and utilize them in di�erent ways by separate algorithms. The �rststrategy (error 
ompensation) applies the dropped elements to the lower and upperparts of the LU fa
torization to 
ompute a new error 
ompensated LU fa
torization.Another strategy (inner-outer iteration), whi
h is a variant of the in
omplete LUfa
torization, embeds the dropped elements in its iteration pro
ess. Experimentalresults showed that the presented enhan
ement strategies improve the a

ura
y ofthe in
omplete LU fa
torization when the initial fa
torizations found to be ina

u-rate. Furthermore, our numeri
al experimental results showed that in many 
ases,the 
onvergen
e 
ost of the pre
onditioned Krylov subspa
e methods is redu
ed onsolving the original sparse matri
es with the proposed strategies.Hybrid Reordering StrategiesIn
omplete LU fa
torization te
hniques often have diÆ
ulty on inde�nite sparse ma-tri
es. We presented hybrid strategies for su
h matri
es and new diagonal reorderingsthat are in 
onjun
tion with a symmetri
 nonde
reasing degree algorithm. We �rst usethe diagonal reorderings to eÆ
iently sear
h for entries of single element and/or themaximum absolute value to be pla
ed on the diagonal for 
omputing a nonsymmet-ri
 permutation. In addition, a nonde
reasing degree algorithm is applied to redu
ethe �ll-in during the ILU fa
torization. With the reordered matri
es, we a
hieveda 
onsiderably improved performan
e of in
omplete LU fa
torizations in stability.Consequently, the 
onvergen
e 
ost of pre
onditioned Krylov subspa
e methods wasredu
ed on solving the reordered inde�nite matri
es.
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Two-Phase Pre
onditioning StrategyAs a part of the 
ontinuous e�ort on solving inde�nite matri
es, a two-phase pre
on-ditioning strategy based on a fa
tored sparse approximate inverse has been proposed.In ea
h phase, the strategy �rst makes the original matrix diagonally dominant toenhan
e the stability by a shifting method and 
onstru
ts an inverse approximation ofthe shifted matrix by utilizing a fa
tored sparse approximate inverse pre
onditioner.The two inverse approximation matri
es produ
ed from ea
h phase are then 
ombinedto be used as a pre
onditioner. Experimental results showed that the presented strat-egy improves the a

ura
y and the stability of the pre
onditioner on solving inde�nitesparse matri
es. Furthermore, the strategy ensures that 
onvergen
e rate of the pre-
onditioned iterations of the two-phase pre
onditioning strategy is mu
h better thanthat of the standard sparse approximate inverse ones for solving inde�nite matri
es.Fa
tored Approximate Inverse Pre
onditioners with Dynami
 SparsityPatternsWe proposed two sparsity pattern sele
tion algorithms for fa
tored approximate in-verse pre
onditioners to enhan
e the performan
e of the pre
onditioned iterativesolvers. The sparsity pattern is adaptively updated in the 
onstru
tion phase byusing 
ombined information of the inverse and original triangular fa
tors of the orig-inal matrix. In order to determine the sparsity pattern, our �rst algorithm uses thenorm of the inverse fa
tors multiplied by the largest absolute value of the originalfa
tors, and the se
ond employs the norm of the inverse fa
tors divided by the normof the original fa
tors. Experimental results showed that these algorithms improvethe a

ura
y and robustness of the pre
onditioners on solving general sparse matri
es.
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7.2 Future WorkOur resear
h area �ts well with other �elds and dis
iplines as we have signi�
ant
ollaborative experien
e with resear
hers from 
omputer vision areas [40℄. Thus, ourfuture work will be applying the pre
onditioning methods to real-world appli
ations inorder to a
hieve an improved performan
e in 
omputational time as well as a

ura
y.Pre
onditioner Re
ommendation SystemMy �rst plan for future work is to develop a pre
onditioner re
ommendation systemfor inde�nite matri
es based on the features of matri
es [65, 66℄. This idea is inspiredby the fa
t that sparse matri
es arising from dis
retized partial di�erential equationproblems possess 
ertain di�erent features represented by the sizes and the lo
ationsof their nonzero entries. Thus, if it 
an be determined that the performan
e ofpre
onditioned Krylov subspa
e methods is related to su
h matrix features, it will bepossible to predi
t the performan
e of these pre
onditioned methods to solve othersparse matri
es that may have the same or similar features.Appli
ation AreasAlong with the development of a pre
onditioner re
ommendation system, my futurework will also be 
on
entrated on applying these strategies presented above withexisting pre
onditioners and solvers. More spe
i�
ally, the new de
omposition te
h-niques, aiming at solving irregularly stru
tured sparse linear systems, will also beused for potential appli
ation areas. Computational 
uid dynami
s, large s
ale 
om-puter modeling and simulations are two examples in whi
h large s
ale linear systemsare routinely solved, and our pre
onditioning te
hniques 
an be extended to a

om-modate the requirement of the appli
ations.Copyright 

 Eun-Joo Lee, 2008.93
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